SUMMARY
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide-encoding genes in vertebrates, providing an entry point to define their function in vivo.
How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant, but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-lives of most proteins is much longer than currently thought and determined to a large degree by proteins synthesis and dilution due to cell division. However, we detect a significant subset of proteins (~15%) in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems.
Retromer is an evolutionarily conserved protein complex composed of the VPS26, VPS29, and VPS35 proteins that selects and packages cargo proteins into transport carriers that export cargo from the endosome. The mechanisms by which retromer is recruited to the endosome and captures cargo are unknown. We show that membrane recruitment of retromer is mediated by bivalent recognition of an effector of PI3K, SNX3, and the RAB7A GTPase, by the VPS35 retromer subunit. These bivalent interactions prime retromer to capture integral membrane cargo, which enhances membrane association of retromer and initiates cargo sorting. The role of RAB7A is severely impaired by a mutation, K157N, that causes Charcot-Marie-Tooth neuropathy 2B. The results elucidate minimal requirements for retromer assembly on the endosome membrane and reveal how PI3K and RAB signaling are coupled to initiate retromer-mediated cargo export.sorting nexin | mass spectrometry | biochemical reconstitution | proteoliposome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.