Background. Ulcerative colitis is a worldwide chronic gastrointestinal disease characterized by variable extensions of colon mucosal inflammation. The available drugs have an incomplete response with various side effects and socioeconomic impacts. Aloe barbadensis Miller (Aloe vera) is a well-known medicinal plant with diverse pharmacological and therapeutic activities. As a result, in the current study, Aloe vera was selected to evaluate its therapeutic effects on experimental colitis in rats. Methods. This study is intended to evaluate the possible beneficial effect of Aloe vera for the treatment of experimental colitis. Trinitrobenzenesulfonic acid (TNBS) was used to induce experimental colitis in 60 of 70 Wistar rats. The rats were grouped in 7 clusters including healthy control, negative, positive control (received sulfasalazine), and test groups treated with Aloe vera extracts via oral or rectal routes. Macroscopic and histologic factors as well as the biochemical parameters were evaluated on day 7. Results. In the present study, it was found that serum levels of tumor necrosis factor-α (75 vs. 44 pg./ml), interleukin-6 (41 vs. 21 pg/ml), and nitric oxide (24 vs. 6 μm/ml) in TNBS-induced untreated colitis treatment were significantly increased as compared to healthy control. Similar patterns were also observed in malondialdehyde (76.41 vs. 236.35 μg/mg) and myeloperoxidase (4.24 vs. 29.38 U/mg) in colonic tissue. Among different treatments, rectal administration of Aloe vera extract (400 mg/kg) exhibited the best result in which serum concentration of tumor necrosis factor-α (55 pg/ml), interleukin-6 (24 pg/ml), and nitric oxide (10 μm/ml) and the levels of malondialdehyde (102.67 μg/mg), as well as myeloperoxidase (12.29 U/mg) in colon tissue, were reduced as compared to the untreated group. Also, the body weight and colon weight/length ratios were more improved in the treated group with 400 mg/kg Aloe vera extract, rectally. Conclusion. Aloe vera extract exhibited a therapeutic effect in TNBS-induced colitis, and local, rectal administration of Aloe vera extract was more effective than oral administration.
The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).
Background: Osteoarthritis (OA) is a progressive degenerative disease. Previous treatment strategies have tried to slow the progress of OA. Objectives: The present study aimed to stop and reverse the progressive nature of OA by the paracrine effects of synovial stem cells. Methods: Fifty male Sprague Dawley rats were randomly allocated to five equal groups (n = 10). The control group received no treatment. The second group received an intra-articular Hyalgan injection. The third group received an intra-articular injection of secreta. The fourth group received an intra-articular injection of synovial-derived stem cells (5 × 106). The last group received an intra-articular injection of secreta combined with synovial-derived stem cells (5 × 106). Three months after treatment, the samples were harvested and evaluated by histopathological and radiological analyses. Results: Histopathological and radiological findings demonstrated significant differences between the synovial stem cell combined with the secreta group and the control and Hyalgan groups. Significant differences were observed in the subchondral bone and matrix scores between the secreta group and the synovial stem cell and Hyalgan groups (P-value = 0.042 and P-value = 0.0001, respectively). Both secreta and synovial stem cell groups showed better healing in terms of cell population viability index than the Hyalgan group (P-value = 0.015 and P-value = 0.005, respectively). The synovial stem cell combined with secreta group showed a significant difference from the synovia stem cell group in both medial femoral condyle and fabella osteophyte indices (P-value = 0.004 and P-value = 0.011, respectively). Conclusions: The group treated with synovial stem cells combined with secreta showed better outcomes than other groups in histopathological and radiological evaluations.
Osteoarthritis (OA) is an inflammatory joint condition, still lacking effective treatments. Some factors consider as the main causes of OA, including biochemical, mechanical, and genetic factors. The growth of studies confirmed that modern medicine in combination with folk medicine regarding the arrival of reliable, efficient, and safe therapeutic products against OA. In the present study, the effects of various single and combinatorial treatments of knee articular cartilage, including stem cells, collagen, and P. atlantica hydroalcoholic leaves extract were investigated in a rat‐induced OA model. On week 12 after OA confirmation, histopathology and radiography assessments were evaluated and the serum and synovial fluid levels of TAC, TNF‐α, PEG2, MPO, MMP3, MMP13, and MDA were also measured. Combination therapy of OA‐induced rats with hydroalcoholic extract of P. atlantic leaves, stem cells, and collagen considerably increased the efficacy of treatment as evidenced by increasing the TAC and lowering TNF‐α, MPO, MMP3, and MMP13 compared to control group and even groups received single therapy. This is in agreement with a high amount of total phenolic compounds and antioxidant capacities of the hydroalcoholic extract of P. atlantic leaves. It is concluded that multifunctional agents targeting the pathophysiology of OA has exhibited significant therapeutic effects against OA.
Objective. Manganese (Mn) has been reported, through dietary and occupational overexposure, to induce neurotoxicity named manganism. Pentoxifylline (PTX) administration attracts much attention considering the beneficial properties of PTX, as an anti-inflammatory and smooth muscle relaxation agent. This in vivo study aims to evaluate the effect of PTX on manganism in rat model. Materials and Methods. Thirty adult male Sprague Dawley rats received MnCl2 (100 mg/kg, i.p. on days 1, 3, and 7) during a week alone or in combination with PTX (300 mg/kg, i.p. every day for 8 consecutive days on manganism rat model). Several locomotor activity indices, as well as biomarkers of oxidative stress, were monitored in the brain tissue of Mn-exposed animals. Results. It was found that PTX supplementation (300 mg/kg, i.p.) deteriorated the Mn-induced locomotor deficit. This drug also increased the Mn brain accumulation as well as reactive oxygen species (ROS) and lipid peroxidation products in the manganism rat model. Moreover, the levels of total antioxidant capacity (TAC) and glutathione (GSH) were shown to be reduced significantly compared to the control group. Conclusion. The results of this study revealed that PTX at a high dose (300 mg/kg) might increase manganism complications. PTX lowers the blood viscosity, improves the tissue perfusion, and increases the Mn levels in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.