Background: The pressed juice of Barley Grass (BG) has become very popular among people for various assumed benefits along with many testimonies of people who have been healed from various ailments such as anemia, cancer, GI problems by consuming BG. The aim of our research was to validate the claims of its medicinal values such as chemo-protective action, high anti-oxidants, RBC membrane stabilization activity, and toxicity level. Methods: Extracts of hexane, ethyl acetate and methanol were quantitatively estimated for total phenolic contents (TPC) and total flavonoid contents (TFC). The same extracts were assessed for their antioxidative potentials with the use of DPPH free radical scavenging assay followed by determination of HRBC membrane stabilization method, Brine Shrimp Lethality Assay (BSLA) and GC-MS analysis. Results: All the extracts showed high TPC and TFC along with the stronger correlation with the antioxidant activity of the extracts suggesting phenolics and flavonoids contents of the extract might be attributed to showing antioxidant activity. The methanolic and ethyl acetate extracts of the plant also showed remarkable antiinflammatory activity where methanolic extracts had the lowest EC50. During Brine Shrimp Lethality Assay, all extracts of BG were found to be bioactive and the degree of lethality was found to be concentration dependent. The GC-MS analysis of the methanolic extract of BG revealed 23 compounds which are reported to possess different biological activities. Conclusion: The study reveals the strong antioxidant and RBC membrane stabilization activity of BG. The Brine Shrimp Lethality Assay found extracts to be bioactive suggesting extracts as a promising candidate for plantderived anti-tumor compounds. Further, studies are needed to validate the data on cancer cell lines.
More than 65% of all human bacterial infection are associated with biofilm. Bacteria in such biofilms are 10 to 1000-fold more resistant to antibiotics than free living bacteria cells. Organisms such as S. aureus and P. aeruginosa are responsible for a significant number of biofilm related infections. In this study, we investigated the antimicrobial and anti-biofilm activity of C. longa L. rhizome extract against biofilm producing S. aureus and P. aeruginosa isolates. The results of MIC and MBC demonstrated promising antibacterial activity of the rhizome extract. TLC and column chromatography detected various curcuminoids while phytochemical analysis also reveals presence of number of bioactive compounds such as alkaloids, flavonoids, phenolics, terpenoids, etc. Micro titer plate assay indicated significant inhibition of biofilm formation in clinical isolates treated with turmeric extract. Thus, on basis of our results turmeric extracts can be considered as natural antibiofilm and antibacterial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.