The objective of this study was to investigate the effect of the NaHCO 3 ingestion on the judo performance. Six male athletes in-gested 0.3 g • kg-1 body weight of NaHCO 3 or CaCO 3 (placebo) 2 h before 3 fights of 5 min, with 15 min recovery. Immediately after-wards, and 15 min after each fight, the athletes related their perceived exertion. The blood lactate concentration was verified in rest, after warming up, 0, 3, 5, 7, 10 and 15 min after each fight. The same experimental protocol was repeated twice by each athlete, except for the ingested substance. The study adopted the counterbalanced double-blind model. There was no significant difference for the performance variables. The perceived exertion did not differ among the treatments, and the blood lactate concentration was significantly greater (p < 0.05) after NaHCO 3 ingestion in the first moments of the protocol. In conclusion, the ergogenic effects of NaH-CO 3 are not enough to contribute to the improvement of the performance in judo fights. However, the model limitations must be considered when generalizing these results. Future studies should use other tools to evaluate the performance in judo.
The aim of this study was to examine the influence of the performance level of athletes on pacing strategy during a simulated 10-km running race, and the relationship between physiological variables and pacing strategy. Twenty-four male runners performed an incremental exercise test on a treadmill, three 6-min bouts of running at 9, 12 and 15 km h(-1), and a self-paced, 10-km running performance trial; at least 48 h separated each test. Based on 10-km running performance, subjects were divided into terziles, with the lower terzile designated the low-performing (LP) and the upper terzile designated the high-performing (HP) group. For the HP group, the velocity peaked at 18.8 +/- 1.4 km h(-1) in the first 400 m and was higher than the average race velocity (P < 0.05). The velocity then decreased gradually until 2,000 m (P < 0.05), remaining constant until 9,600 m, when it increased again (P < 0.05). The LP group ran the first 400 m at a significantly lower velocity than the HP group (15.6 +/- 1.6 km h(-1); P > 0.05) and this initial velocity was not different from LP average racing velocity (14.5 +/- 0.7 km h(-1)). The velocity then decreased non-significantly until 9,600 m (P > 0.05), followed by an increase at the end (P < 0.05). The peak treadmill running velocity (PV), running economy (RE), lactate threshold (LT) and net blood lactate accumulation at 15 km h(-1) were significantly correlated with the start, middle, last and average velocities during the 10-km race. These results demonstrate that high and low performance runners adopt different pacing strategies during a 10-km race. Furthermore, it appears that important determinants of the chosen pacing strategy include PV, LT and RE.
The aim was to investigate the influence of a carbohydrate (CHO) mouth rinse on the vastus lateralis (VL) and rectus femoris (RF) electromyographic activity (EMG) and time to exhaustion (TE) during moderate (MIE) and high-intensity cycling exercise (HIE). Thirteen participants cycled at 80% of their respiratory compensation point and at 110% of their peak power output to the point of exhaustion. Before the trials and every 15 min during MIE, participants rinsed with the CHO or Placebo (PLA) solutions. The root mean square was calculated. CHO had no effect on the TE during HIE (CHO: 177.3 ± 42.2 s; PLA: 163.0 ± 26.7 s, p = 0.10), but the TE was increased during MIE (CHO: 76.6 ± 19.7 min; PLA: 65.4 ± 15.2 min; p = 0.01). The EMG activity in the VL was higher than PLA at 30 min (CHO: 10.5% ± 2.6%; PLA: 7.7% ± 3.3%; p = 0.01) and before exhaustion (CHO: 10.3% ± 2.5%; PLA: 8.0% ± 2.9%; p = 0.01) with CHO rinsing. There was no CHO effect on the EMG activity of RF during MIE or for VL and RF during HIE. CHO mouth rinse maintains EMG activity and enhances performance for MIE but not for HIE.
Caffeine ingestion increased approximately 14 % endurance performance after the induction of mental fatigue. This effect was accompanied by a tendency to improvement in mood state (i.e., vigor). Therefore, caffeine ingestion can promote a beneficial effect on endurance performance in mentally fatigued individuals.
The relationship between carbohydrate (CHO) availability and exercise performance has been thoroughly discussed. CHO improves performance in both prolonged, low-intensity and short, high-intensity exercises. Most studies have focused on the effects of CHO supplementation on the performance of constant-load, time-to-exhaustion exercises. Nevertheless, in the last 20 years, there has been a consistent increase in research on the effects of different forms of CHO supplementation (e.g., diet manipulation, CHO supplementation before or during exercise) on performance during closed-loop exercises, such as cycling time trials (TTs). A TT is a highly reproducible exercise and reflects a more realistic scenario of competition compared with the time-to-exhaustion test. CHO manipulation has been performed in various time periods, such as days before, minutes before, during a TT or in a matched manner (e.g. before and during a TT). The purpose of this review is to address the possible effects of these different forms of CHO manipulation on the performance during a cycling TT. Previous data suggest that when a high-CHO diet (~70% of CHO) is consumed before a TT (24-72 h before), the mean power output increases and reduces the TT time. When participants are supplemented with CHO (from 45 to 400 g) prior to a TT (from 2 min to 6 h before the TT), mean power output and time seem to improve due to an increase in CHO oxidation. Similarly, this performance also seems to increase when participants ingest CHO during a TT because such consumption maintains plasma glucose levels. A CHO mouth rinse also improves performance by activating several brain areas related to reward and motor control through CHO receptors in the oral cavity. However, some studies reported controversial results concerning the benefits of CHO on TT performance. Methodological issues such as time of supplementation, quantity, concentration and type of CHO ingested, as well as the TT duration and intensity, should be considered in future studies because small variations in any of these factors may have beneficial or adverse effects on TT performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.