Background--Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke. We investigated whether brief exposure to marijuana SHS causes acute vascular endothelial dysfunction.
Background Heated tobacco products (also called “heat-not-burn” products) heat tobacco at temperatures below that of combustion, causing nicotine and other compounds to aerosolize. One such product, IQOS from Philip Morris International, is being marketed internationally with claims of harm reduction. We sought to determine whether exposure to IQOS aerosol impairs arterial flow-mediated dilation (FMD), a measure of vascular endothelial function that is impaired by tobacco smoke. Methods We exposed anesthetized rats (n=8/group) via nose cone to IQOS aerosol from single HeatSticks, mainstream smoke from single Marlboro Red cigarettes, or clean air, for a series of consecutive 30-second cycles over 1.5 to 5 minutes. Each cycle consisted of 15 or 5 seconds of exposure followed by removal from the nose cone. We measured pre- and post-exposure FMD, and post-exposure serum nicotine and cotinine. Results FMD was impaired comparably by ten 15-second exposures and ten 5-second exposures to IQOS aerosol and to cigarette smoke, but not by clean air. Serum nicotine levels were similar to plasma levels after humans have smoked one cigarette, confirming that exposure conditions had real-world relevance. Post-exposure nicotine levels were ~4.5-fold higher in rats exposed to IQOS than to cigarettes, despite nicotine being measured in the IQOS aerosol at ~63% the amount measured in smoke. When IQOS exposure was briefer, leading to comparable serum nicotine levels to the cigarette group, FMD was still comparably impaired. Conclusions Acute exposures to IQOS aerosol impairs FMD in rats. IQOS use does not necessarily avoid the adverse cardiovascular effects of smoking cigarettes.
Background: The harmful vascular effects of smoking are well established, but the effects of chronic use of electronic cigarettes (e-cigarettes) on endothelial function are less understood. We hypothesized that e-cigarette use causes changes in blood milieu that impair endothelial function. Methods: Endothelial function was measured in chronic e-cigarette users, chronic cigarette smokers, and nonusers. We measured effects of participants’ sera, or e-cigarette aerosol condensate, on NO and H 2 O 2 release and cell permeability in cultured endothelial cells (ECs). Results: E-cigarette users and smokers had lower flow-mediated dilation (FMD) than nonusers. Sera from e-cigarette users and smokers reduced VEGF (vascular endothelial growth factor)-induced NO secretion by ECs relative to nonuser sera, without significant reduction in endothelial NO synthase mRNA or protein levels. E-cigarette user sera caused increased endothelial release of H 2 O 2 , and more permeability than nonuser sera. E-cigarette users and smokers exhibited changes in circulating biomarkers of inflammation, thrombosis, and cell adhesion relative to nonusers, but with distinct profiles. E-cigarette user sera had higher concentrations of the receptor for advanced glycation end products (RAGE) ligands S100A8 and HMGB1 (high mobility group box 1) than smoker and nonuser sera, and receptor for advanced glycation end product inhibition reduced permeability induced by e-cigarette user sera but did not affect NO production. Conclusions: Chronic vaping and smoking both impair FMD and cause changes in the blood that inhibit endothelial NO release. Vaping, but not smoking, causes changes in the blood that increase microvascular endothelial permeability and may have a vaping-specific effect on intracellular oxidative state. Our results suggest a role for RAGE in e-cigarette-induced changes in endothelial function.
We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function) in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30 min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time.
Introduction Electronic nicotine delivery systems (ENDS; i.e., vaping devices) such as e-cigarettes, heated tobacco products, and newer coil-less ultrasonic vaping devices are promoted as less harmful alternatives to combustible cigarettes. However, their cardiovascular effects are understudied. We investigated whether exposure to aerosol from a wide range of ENDS devices, including a new ultrasonic vaping device, impairs endothelial function. Methods We measured arterial flow-mediated dilation (FMD) in rats (n=8/group) exposed to single session of 10 cycles of pulsatile 5s exposure over 5 minutes to aerosol from e-liquids with and without nicotine generated from a USONICIG ultrasonic vaping device, previous generation e-cigarettes, 5% nicotine JUUL pods (Virginia Tobacco, Mango, Menthol), and an IQOS heated tobacco product; with Marlboro Red cigarette smoke and clean air as controls. We evaluated nicotine absorption and serum nitric oxide levels after exposure, and effects of different nicotine acidifiers on platelet aggregation. Results Aerosol/smoke from all conditions except air significantly impaired FMD. Serum nicotine varied widely from highest in the IQOS group to lowest in USONICIG and previous generation e-cig groups. NO levels were not affected by exposure. Exposure to JUUL and similarly acidified nicotine salt e-liquids did not affect platelet aggregation rate. Despite lack of heating coil, the USONICIG under airflow conditions heated e-liquid to ~77˚C. Conclusions A wide range of ENDS, including multiple types of e-cigarettes with and without nicotine, a heated tobacco product, and an ultrasonic vaping device devoid of heating coil, all impair FMD after a single vaping session comparably to combusted cigarettes. Implications The need to understand the cardiovascular effects of various ENDS is of timely importance, as we have seen a dramatic increase in the use of these products in recent years, along with the growing assumption among its users that these devices are relatively benign. Our conclusion that a single exposure to aerosol from a wide range of ENDS impairs endothelial function comparably to cigarettes indicates that vaping can cause similar acute vascular functional impairment to smoking and is not a harmless activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.