Two nonallelic mouse mutations with severe dwarf phenotypes are characterized by a lack of growth hormone, prolactin, and thyroid stimulating hormone. The cells that normally synthesize these pituitary hormones express a common transcription factor called GHF-1 or Pit-1. Using an intersubspecific backcross, we have demonstrated tight linkage of the Pit-1 and Snell dwarf (dw) genes on mouse chromosome 16. No recombination was observed between Pit-1 and dw in 110 individuals examined. Southern blot analysis of genomic DNA reveals that the Pit-1 gene is rearranged in C3H/HeJ-dwJ/dw mice but not in coisogenic +/+ animals, providing molecular evidence that a lesion in the Pit-1 gene results in the Snell dwarf phenotype. Demonstration of low levels of Pit-1 expression in Ames dwarf (df) mice implies that both Pit-1 and df expression may be required for pituitary differentiation.
Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.
Direct repeats of the hexamer AGGTCA can serve as response elements for vitamin D, thyroid hormone, or retinoic acid. The specificity of the response appears to reside in the spacing between the hexamers, with response elements for vitamin D restricted to direct repeats separated by a 3-base pair (bp) spacer, thyroid hormone a 4-bp spacer, and retinoic acid a 5-bp spacer (3-4-5 rule). Recently we have shown that the optimum thyroid hormone receptor binding site consists of an 8-bp sequence (TAAGGTCA), not a hexamer. Therefore we tested whether the 3-4-5 rule is valid for octamer sequence direct repeats. In transfection experiments octamer direct repeats with 3-, 4-, or 5-bp spacers conferred equivalently strong thyroid hormone responses, although a repeat with a 9-bp spacer was substantially weaker. For the 4- and 5-bp spacer constructs, the 5' half-site octamer had as strong an influence on thyroid hormone induction as did the 3' half-site octamer, although for the 3-bp spacer construct the 5' octamer was marginally less potent than the 3' octamer. Transfection and gel shift experiments did not suggest a simple correlation between the binding of thyroid hormone receptor-retinoid X receptor heterodimers and thyroid hormone induction from these response elements. We conclude that half-site sequence can override the effect of spacing in determining the hormone responsiveness of a direct repeat response element. In addition, the thyroid hormone response may not be due simply to the binding of thyroid hormone receptor-retinoid X receptor heterodimers to the DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.