Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide-gated (CNG), nonselective cation channels. The consequent Ca 2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca 2+ -activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose-response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca 2+ -activated Cl current does not influence the behavioral olfactory threshold in mice.olfactory receptor neurons | olfactory transduction | cyclic-nucleotidegated channel | calcium-activated chloride channel | signal amplification
The calcium-activated chloride channel anoctamin-2 (Ano2) is thought to amplify transduction currents in olfactory receptor neurons (ORNs), a hypothesis supported by previous studies in dissociated neurons from Ano2−/− mice. Paradoxically, despite a reduction in transduction currents in Ano2−/− ORNs, their spike output for odor stimuli may be higher. We examined the role of Ano2 in ORNs in their native environment in freely breathing mice by imaging activity in ORN axons as they arrive in the olfactory bulb glomeruli. Odor-evoked responses in ORN axons of Ano2−/− animals were consistently larger for a variety of odorants and concentrations. In an open arena, Ano2−/− animals took longer to approach a localized odor source than Ano2+/+ animals, revealing clear olfactory behavioral deficits. Our studies provide the first in vivo evidence toward an alternative or additional role for Ano2 in the olfactory transduction cascade, where it may serve as a feedback mechanism to clamp ORN spike output.
In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca influx through open CNG channels triggers an inward current through Ca-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.