Background: Magnetic resonance (MR) image is one of the most important diagnostic tools for brain tumor detection. Segmentation of glioma tumor region in brain MR images is challenging in medical image processing problems. Precise and reliable segmentation algorithms can be significantly helpful in the diagnosis and treatment planning. Methods: In this article, a novel brain tumor segmentation method is introduced as a postsegmentation module, which uses the primary segmentation method's output as input and makes the segmentation performance values better. This approach is a combination of fuzzy logic and cellular automata (CA). Results: The BraTS online dataset has been used for implementing the proposed method. In the first step, the intensity of each pixel is fed to a fuzzy system to label each pixel, and at the second step, the label of each pixel is fed to a fuzzy CA to make the performance of segmentation better. This step repeated while the performance saturated. The accuracy of the first step was 85.8%, but the accuracy of segmentation after using fuzzy CA was obtained to 99.8%. Conclusion: The practical results have shown that our proposed method could improve the brain tumor segmentation in MR images significantly in comparison with other approaches.
Introduction: Brain Age Gap (BAG) is defined as the difference between the brain's predicted age and the chronological age of an individual. Magnetic resonance imaging (MRI)-based BAG can quantify acceleration of brain aging, and is used to measure brain health as aging and disease interact. Motion in the scanner is a common occurrence that can affect the acquired MRI data and act as a major confound in the derived models. As such, age related changes in head motion may impact the observed age-related differences. However, the relationship between head motion and BAG has not been directly examined. The aim of this study is to assess the impact of motion on voxel-based morphometry (VBM) based BAG. Methods: Data were obtained from two sources: i) T1-weighted (T1w) MRIs from the Cambridge Centre for Ageing and Neuroscience (CamCAN) were used to train the brain age prediction model, and ii) T1w MRIs from the Movement-related artifacts (MR-ART) dataset were used to assess the impact of motion on BAG. MR-ART includes one motion-free and two motion-affected (one low and one high) 3D T1w MRIs. We also visually rated the motion levels of the MR-ART MRIs from 0 to 5, with 0 meaning no motion and 5 high motion levels. All images were pre-processed through a standard VBM pipeline. GM density across cortical and subcortical regions were then used to train the brain age prediction model and assess the relationship between BAG and MRI motion. Principal component analysis was used to perform dimension reduction and extract the VBM-based features. BAG was estimated by regressing out the portion of delta age explained by chronological age. Linear mixed effects models were used to investigate the relationship between BAG and motion session as well as motion severity, including participant IDs as random effects. Results: In contrast with the session with no induced motion, predicted delta age was significantly higher for high motion sessions (t-value = 5.06, p < 0.0001), with marginal effect for low motion sessions (t-value = 1.95, p = 0.051). In addition, delta age was significantly associated with motion severity as evaluated by visual rating (t = 4.46, p < 0.0001). Conclusion: Motion in the scanner can significantly impact brain age estimates, and needs to be accounted for as a confound, particularly when studying populations that are known to have higher levels of motion in the scanner. These results have significant implications for brain age studies in aging and neurodegeneration. Based on these findings, we recommend assessment and inclusion of visual motion ratings in such studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.