The recent emergence and spread of dengue hemorrhagic fever in the Americas have been a major source of concern. Efforts to control this disease are dependent on understanding the pathogenicity of dengue viruses and their transmission dynamics. Pathogenicity studies have been hampered by the lack of in vitro or in vivo models of severe dengue disease. Alternatively, molecular epidemiologic studies which associate certain dengue virus genetic types with severe dengue outbreaks may point to strains with increased pathogenicity. The comparison of nucleotide sequences (240 bp) from the E/NS1 gene region of the dengue virus genome has been shown to reflect evolutionary relationships and geographic origins of dengue virus strains. This approach was used to demonstrate an association between the introduction of two distinct genotypes of dengue type 2 virus and the appearance of dengue hemorrhagic fever in the Americas. Phylogenetic analyses suggest that these genotypes originated in Southeast Asia and that they displaced the native, American genotype in at least four countries. Vaccination and other control efforts should therefore be directed at decreasing the transmission of these "virulent" genotypes.
The understanding of dengue virus pathogenesis has been hampered by the lack of in vitro and in vivo models of disease. The study of viral factors involved in the production of severe dengue, dengue hemorrhagic fever (DHF), versus the more common dengue fever (DF), have been limited to indirect clinical and epidemiologic associations. In an effort to identify viral determinants of DHF, we have developed a method for comparing dengue type 2 genomes (reverse transcriptase PCR in six fragments) directly from patient plasma. Samples for comparison were selected from two previously described dengue type 2 genotypes which had been shown to be the cause of DF or DHF. When full genome sequences of 11 dengue viruses were analyzed, several structural differences were seen consistently between those associated with DF only and those with the potential to cause DHF: a total of six encoded amino acid charge differences were seen in the prM, E, NS4b, and NS5 genes, while sequence differences observed within the 5′ nontranslated region (NTR) and 3′ NTR were predicted to change RNA secondary structures. We hypothesize that the primary determinants of DHF reside in (i) amino acid 390 of the E protein, which purportedly alters virion binding to host cells; (ii) in the downstream loop (nucleotides 68 to 80) of the 5′ NTR, which may be involved in translation initiation; and (iii) in the upstream 300 nucleotides of the 3′ NTR, which may regulate viral replication via the formation of replicative intermediates. The significance of four amino acid differences in the nonstructural proteins NS4b and NS5, a presumed transport protein and the viral RNA polymerase, respectively, remains unknown. This new approach to the study of dengue virus genome differences should better reflect the true composition of viral RNA populations in the natural host and permit their association with pathogenesis.
The genetic diversity and phylogenetic relationships of a collection of strains of dengue virus type 1 (DV-1), isolated from different parts of the world, were investigated. Phylogenetic trees derived from the complete sequence of the E gene of 44 strains suggested the existence of five genetic types defined by a maximum nucleotide divergence within each group of 6%. The 22 strains from America were classified into a single genetic type that included strains associated either with classical dengue or hemorrhagic dengue episodes. Using a maximum likelihood procedure based on a single rate with dated tips model and substitution rates calculated at the third codon position, evolution of the five DV-1 genotypes was shown to conform to a molecular clock. The average rate of evolution was estimated to be approximately 16.2 x 10(-4) substitutions/third codon position site/year. Using this estimate, divergence among the DV-1 genotypes was calculated to have occurred approximately 100 years ago. Very low average value of the ratio of nonsynonymous-to-synonymous nucleotide substitutions, relative to the respective sites (0.046), indicated that the evolution of the E gene of the DV-1 is subject mostly to purifying selection.
One of the most important questions in arbovirology concerns the origin of epidemic Venezuelan equine encephalitis (VEE) viruses; these viruses caused periodic, extensive epidemics/epizootics in the Americas from 1938-1973 (reaching the United States in 1971) but had recently been presumed extinct. We have documented the 1992 emergence of a new epidemic/epizootic VEE virus in Venezuela. Phylogenetic analysis of strains isolated during two outbreaks indicated that the new epidemic/epizootic virus(es) evolved recently from an enzootic VEE virus in northern South America. These results suggest continued emergence of epizootic VEE viruses; surveillance of enzootic viruses and routine vaccination of equines should therefore be resumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.