The emergence of the pandemic has led to fundamental social and economic swaps throughout the world, the sponsored measures taken have a significant effect on the mental health of individuals. The objective of the study was to compare the level of depression related to the meaning of life in students in times of pandemic at the Continental University of Peru and the "Rafael María Baralt" National Experimental University of Venezuela. The type of research developed was descriptive correlational with a cross-sectional design. The sample was made up of two groups: the first corresponds to 300 students from Peru and 300 from Venezuela. The Beck Depression Inventory and the Dimensional Sense of Life Scale, standardized version for Latin America, were used as measurement instruments. With the Spearman correlation coefficient it was determined that there is a moderate negative relationship of -.610, which indicates that there is an inverse correlation in the variables level of depression and sense of life of the students and it was concluded that, among the students university students from both countries, there is a moderate inverse significant correlation between depression and the meaning of life, in the current times of pandemic.
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Here, the magnetic Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) with a new core-shell structure was synthesized, and its sonophotocatalytic properties were evaluated for acid red 14 (AR14) degradation. Particle characterizations were determined by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and vibrating-sample magnetometer (VSM), and the analysis results offered an excellent synthesis of mesoporous particles. Fe3O4@SiO2/PAEDTC@MIL-101 (Fe)/UV/US showed high degradation kinetics rate (0.0327 min−1) compared to sonocatalytic processes (0.0181 min−1), photocatalytic (0218 min−1), sonolysis (0.008 min−1), and photolysis (0.005 min−1). Maximum removal efficiencies of AR14 (100%) and total organic carbon (69.96%) were obtained at pH of 5, catalyst mass of 0.5 g/L, initial AR14 concentration of 50 mg/L, and ultrasound power of 36 W. Evaluation of BOD5/COD ratio during dye treatment confirmed that the sonophotocatalysis process can be useful for converting major contaminant molecules into biodegradable compounds. After recycling eight times, the prepared composite still has sonophotocatalytic degradation stability above 90% for AR14. Scavenging tests confirmed that holes (h+) and hydroxyl (•OH) were the pivotal agents in the decomposition system. Based on the results, the synthesized sample can be suggested as an excellent and promising sonophotocatalyst for the degradation of AR14 dye and its conversion into biodegradable compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.