We demonstrate a compact, single-mode quantum cascade laser source continuously tunable between 8.7 and 9.4 m. The source consists of an array of single-mode distributed feedback quantum cascade lasers with closely spaced emission wavelengths fabricated monolithically on a single chip and driven by a microelectronic controller. Our source is suitable for a variety of chemical sensing applications. Here, we use it to perform absorption spectroscopy of fluids.
Abstract-DFB quantum cascade laser (DFB-QCL) arrays operating between 8.7 and 9.4 m are investigated for their performance characteristics-single-mode selection of the DFB grating, and variability in threshold, slope efficiency, and output power of different lasers in the array. Single-mode selection refers to the ability to choose a desired mode/frequency of laser emission with a DFB grating. We apply a theoretical framework developed for general DFB gratings to analyze DFB-QCL arrays. We calculate how the performance characteristics of DFB-QCLs are affected by the coupling strength of the grating, and the relative position of the mirror facets at the ends of the laser cavity with respect to the grating. We discuss how single-mode selection can be improved by design. Several DFB-QCL arrays are fabricated and their performance examined. We achieve desired improvements in single-mode selection, and we observe the predicted variability in the threshold, slope efficiency, and output power of the DFB-QCLs. As a demonstration of potential applications, the DFB-QCL arrays are used to perform infrared absorption spectroscopy with fluids.Index Terms-DFB lasers, infrared spectroscopy, mid-infrared, quantum cascade lasers (QCLs), semiconductor lasers.
The authors have fabricated and characterized quantum cascade lasers with spiral-shaped microresonators. The lasers operate in pulsed mode at room temperature with peak optical power greater than 20mW and in continuous wave at temperatures up to 125K. They exhibit single-mode emission in both pulsed mode and continuous wave operation, with a 30dB side-mode suppression ratio at injection currents well above threshold. Subthreshold spectral measurements indicate that the spiral cavities support whispering-gallery-like modes. Single-mode lasing occurs on one of these modes. Far-field profiles reveal enhanced directionality compared to microdisk lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.