S100A1, a 21-kDa dimeric Ca 2؉-binding protein, is an enhancer of cardiac Ca 2؉ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca 2؉ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca 2؉ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca 2؉ release in S100A1 ؊/؊ muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca 2؉ -dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.The S100 family of proteins, so named because of their solubility in 100% ammonium sulfate, are small (16 -26 kDa), acidic, Ca 2ϩ
The oxidation of L-cysteine and its metabolites cystine and L-cysteinesulfinic acid by chlorite and chlorine dioxide has been studied in unbuffered neutral and slightly acidic media. The stoichiometry of the oxidation of L-cysteine was deduced to be 3ClO 2 -+ 2H 2 NCH(COOH)CH 2 SH f 3Cl -+ 2H 2 NCH(COOH)CH 2 SO 3 H with the final product as cysteic acid. The stoichiometry of the chlorite-cysteinesulfinic acid gave a ratio of 1:2, ClO 2 -+ 2H 2 NCH(COOH)CH 2 SO 2 H f Cl -+ 2H 2 NCH(COOH)CH 2 SO 3 H. There was no further oxidation past cysteic acid, and there was no evidence of sulfate formation which would have indicated the cleavage of the carbon-sulfur bond. The reaction is oligooscillatory in chlorine dioxide formation. In conditions of excess oxidant, the reaction is characterized by a short induction period followed by a rapid and autocatalytic formation of chlorine dioxide. Chlorine dioxide is formed by the reaction of intermediate HOCl with the excess chlorite: 2ClO 2 -+ 2HOCl + H + f 2ClO 2 (aq) + Cl -+ H 2 O. Oligooscillations observed in chlorine dioxide formation result from the competition between this pure oxyhalogen reaction and reactions that consume chlorine dioxide. The rate of the reaction of chlorine dioxide with cysteine and its metabolites is fast and is of comparable magnitude with the reactions that form chlorine dioxide. The reaction of chlorine dioxide with L-cysteine is first order in both oxidant and substrate, retarded by acid, and has a lower-limit bimolecular rate constant of 405 ( 50 M -1 s -1 , while for the reaction with L-cysteinesulfinic acid the rate constant is 210 ( 15 M -1 s -1 . It would appear that the existence of a zwitterion on the asymmetric carbon atom precludes the formation of N-chloramines as has been observed with taurine and aminomethanesulfonic acid. The mechanism for the reaction is satisfactorily described by a network of 28 elementary reactions which include autocatalysis by HOCl.
In skeletal muscle, the release of calcium (Ca2+) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca2+ release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca2+ buffering as well as its potential for modulating RyR1, the L-type Ca2+ channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca2+]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca2+ content and SR Ca2+ release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca2+ release with single action potentials and a collapse of the Ca2+ release with repetitive trains. Under voltage clamp, SR Ca2+ release flux and total SR Ca2+ release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca2+ release flux appears to be solely due to elimination of the slowly decaying component of SR Ca2+ release, whereas the rapidly decaying component of SR Ca2+ release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca2+] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca2+]free in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca2+ buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca2+ release.
In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca²⁺ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu²⁴⁴²-Pro²⁴⁷⁷ of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca²⁺ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca²⁺ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca²⁺ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.