Key Points• Plasmodium vivax merozoites preferentially infect a subgroup of reticulocytes generally restricted to the bone marrow.• Accelerated "maturation" of infected reticulocytes.Plasmodium vivax merozoites only invade reticulocytes, a minor though heterogeneous population of red blood cell precursors that can be graded by levels of transferrin receptor (CD71) expression. The development of a protocol that allows sorting reticulocytes into defined developmental stages and a robust ex vivo P vivax invasion assay has made it possible for the first time to investigate the fine-scale invasion preference of P vivax merozoites. Surprisingly, it was the immature reticulocytes (CD71 1) that are generally restricted to the bone marrow that were preferentially invaded, whereas older reticulocytes (CD71 2 ), principally found in the peripheral blood, were rarely invaded. Invasion assays based on the CD71 1 reticulocyte fraction revealed substantial postinvasion modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD71 1 reticulocytes convert into a highly deformable CD71 2 infected red blood cell devoid of host reticular matter, a process that normally spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection. (Blood. 2015;125(8):1314-1324
BackgroundThe transition from enucleated reticulocytes to mature normocytes is marked by substantial remodeling of the erythrocytic cytoplasm and membrane. Despite conspicuous changes, most studies describe the maturing reticulocyte as a homogenous erythropoietic cell type. While reticulocyte staging based on fluorescent RNA stains such as thiazole orange have been useful in a clinical setting; these ‘sub-vital’ stains may confound delicate studies on reticulocyte biology and may preclude their use in heamoparasite invasion studies.Design and MethodsHere we use highly purified populations of reticulocytes isolated from cord blood, sorted by flow cytometry into four sequential subpopulations based on transferrin receptor (CD71) expression: CD71high, CD71medium, CD71low and CD71negative. Each of these subgroups was phenotyped in terms of their, morphology, membrane antigens, biomechanical properties and metabolomic profile.ResultsSuperficially CD71high and CD71medium reticulocytes share a similar gross morphology (large and multilobular) when compared to the smaller, smooth and increasingly concave reticulocytes as seen in the in the CD71low and CD71negativesamples. However, between each of the four sample sets we observe significant decreases in shear modulus, cytoadhesive capacity, erythroid receptor expression (CD44, CD55, CD147, CD235R, and CD242) and metabolite concentrations. Interestingly increasing amounts of boric acid was found in the mature reticulocytes.ConclusionsReticulocyte maturation is a dynamic and continuous process, confounding efforts to rigidly classify them. Certainly this study does not offer an alternative classification strategy; instead we used a nondestructive sampling method to examine key phenotypic changes of in reticulocytes. Our study emphasizes a need to focus greater attention on reticulocyte biology.
Summary Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor–ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte‐infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long‐term survival of the parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.