This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ∼15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the “effective NIEL” using results from molecular dynamics simulations.
Ferroelectric field effect transistors (FeFETs) based on lead zirconate titanate (PZT) ferroelectric material and amorphous-indium-gallium-zinc oxide (a-IGZO) were developed and characterized. The PZT material was processed by a sol-gel method and then used as ferroelectric gate. The a-IGZO thin films, having the role of channel semiconductor, were deposited by radio-frequency magnetron sputtering, at a temperature of ∼50 • C. Characteristics of a typical field effect transistor with SiO 2 gate insulator, grown on highly doped silicon, and of the PZT-based FeFET were compared. It was proven that the FeFETs had promising performances in terms of I on /I off ratio (i.e., 10 6) and I DS retention behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.