Abstract. Use of full-matrix capture (FMC), combined with the total focusing method (TFM), has been shown to provide improvements to flaw sensitivity within components of irregular geometry. Ultrasonic immersion inspection of aerospace discs requires strict specifications to ensure full coverage -one of which is that all surfaces should be machined flat. The ability to detect defects through curved surfaces, with an equivalent sensitivity to that obtained through flat surfaces could bring many advantages. In this work, the relationship between surface curvature and sensitivity to standard defects was quantified for various front wall radii. Phased array FMC immersion inspection of curved components was simulated using finite element modelling, then visualized using surface-compensated focusing techniques. This includes the use of BRAIN software developed at the University of Bristol for production of TFM images. Modelling results were compared to experimental data from a series of test blocks with a range of curvatures, containing standard defects. The sensitivity to defects is evaluated by comparing the performance to conventional methods. Results are used to highlight the benefits and limitations of these methods relating to the application area of aerospace engine disc forgings.
The Main Pay reservoir of the supergiant Rumaila oil field in southeast Iraq has been on production since 1953, and is now in a mature production phase. An onshore field of this scale and longevity is in a rare position to benefit from large volumes of high density dynamic data, including repeat cased hole saturation logs, formation pressure data and production logging tool runs. In mature field life these data are beginning to highlight complex reservoir behaviour, not fully captured in previous subsurface descriptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.