This paper introduces a novel technique to directly optimise the Figure of Merit (FOM) for phonetic spoken term detection. The FOMis a popular measure of STD accuracy, making it an ideal candidate for use as an objective function. A simple linear model is introduced to transform the phone log-posterior probabilities output by a phone classifier to produce enhanced log-posterior features that are more suitable for the STD task. Direct optimisation of the FOM is then performed by training the parameters of this model using a nonlinear gradient descent algorithm. Substantial FOM improvements of 11% relative are achieved on held-out evaluation data, demonstrating the generalisability of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.