CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.
Cell responses to external radiofrequencies (RF) are a fundamental problem of much scientific research, clinical applications, and even daily lives surrounded by wireless communication hardware. In this work, we report an unexpected observation that the cell membrane can oscillate at the nanometer scale in phase with the external RF radiation from kHz to GHz. By analyzing the oscillation modes, we reveal the mechanism behind the membrane oscillation resonance, membrane blebbing, the resulting cell death, and the selectivity of plasma-based cancer treatment based on the difference in the membrane's natural frequencies among cell lines. Therefore, a selectivity of treatment can be achieved by aiming at the natural frequency of the target cell line to focus the membrane damage on the cancer cells and avoid normal tissues nearby. This gives a promising cancer therapy that is especially effective in the mixing lesion of the cancer cells and normal cells such as glioblastoma where surgical removal is not applicable. Along with these new phenomena, this work provides a general understanding of the cell coupling with RF radiation from the externally stimulated membrane behavior to the cell apoptosis and necrosis.
Over the last three decades, cold atmospheric plasma (CAP) has been heavily investigated in a wide range of biological applications, including wound healing, microorganism sterilization, and cancer treatment. Atmospheric pressure plasma jets (APPJs) are the most common plasma sources in plasma medicine. An APPJ’s size determines its application range and approach in treatment. In this study, we demonstrated the real-time recognition of an APPJ’s plasma plume output using computer vision (CV), dramatically improving the measurement speed compared to the traditional method of using the naked eye. Our work provides a framework to monitor an aspect of an APPJ’s performance in real time, which is a necessary step to achieving an intelligent CAP source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.