Development of mine pit and overburden disposal has caused dynamic changes in the catchment area of Ukud River, one of the rivers that flow through Lati Mining Operation. The maximum discharge of the river reached 13m 3 /second and the catchment area occupied a total area of 1901.7 hectares. Since the mining operations started, the river discharge fluctuations have changed considerably. In addition, the catchment area that was dominated by overburden disposal area contained sulphide minerals that potentially degrade the water quality of Ukud River due to the formation of acid mine drainage. Hydrological studies are essential to investigate potential environmental impacts of the mining activities. This study was conducted to determine the characteristics of the hydrologic systems in the mining area using semi-distributed models that can be used to simulate the river flow within catchment area.
Acid soils are caused by mining, potentially causing the death of plants. Although soil pH is one of the useful indicators to evaluate acid soil conditions for successful revegetation, the dissolution of harmful elements under acidic conditions should be considered in addition to the tolerance mechanism of plants in mines. Thus, this study aims to report the current situation of acid soils and plant growth in mine site and to elucidate the effects of acid soils on plant growth over time through field investigation and a vegetation test. The results showed that the dissolution of Al from acid soils which were attributed to the dissolution of sulfides influenced plant growth. Not only soil pH but also the assessment of the dissolution of sulfides over time is crucial for successful revegetation, suggesting that net acid producing potential (NAPP) and net acid generation (NAG) pH, which are used for evaluating the formation of acidic water, are useful to evaluate soil conditions for the revegetation. Furthermore, acid-tolerant plant survived under acidic conditions by increasing the resistance against acidic conditions with the plant growth. Such factors and the proper selection of plant species play an important role in achieving successful revegetation in mines.
Tracer gas measurements have been carried out at the Pongkor underground gold mine, Indonesia, to evaluate mine ventilation flows and to investigate the effective turbulent diffusion coefficients in mine airways. The airflow routes and quantity, and the diffusion coefficient have been obtained by matching the measurements with numerical simulations using the advection-diffusion equation. Two leakages with flow quantity of 26.7 and 36.7 m 3 /s were detected. Reduction of leakages have been measured with the method after stopping the leakage routes. The turbulent diffusion coefficients for the simple airways have good agreement with the Taylor equation. However, for complex airways in operating mines, the coefficients show higher values (1.5 to 32 times) than that obtained by the Taylor equation and these have been compared with the data measured in the Kushiro coal mine, Japan. It is mainly affected by the ratio of airway length over equivalent diameter and airway frictions, but airflow mixing along the airway also has an effect on the diffusion coefficient.
The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.