The recent analysis of the first successful RV144 vaccine trial revealed that a high titer of plasma anti-V2 antibodies (Abs) correlated with a decreased risk of HIV-1 infection in vaccine recipients. To understand the mechanism of immune correlates, we studied seven anti-V2 monoclonal Abs (mAbs) developed from HIV-1 infected individuals. The V2 mAbs target conserved epitopes, including the binding site for α4β7 integrin, and are broadly cross-reactive with various gp120 proteins. Preferential usage of the VH1-69 gene by V2 mAbs may depend on selection by the same antigenic structure. Six of seven V2 mAbs weakly neutralized four to eight of the 41 pseudoviruses tested and resistance to neutralization was correlated with longer V2 domains. The data suggest the presence of shared, conserved structural elements in the V2 loop, and these can be used in the design of vaccine immunogens inducing broadly reactive Abs with anti-viral activities.
The region consisting of the first and second variable regions (V1V2) of gp120 plays vital roles in the functioning of the HIV-1 envelope (Env). V1V2, which harbors multiple glycans and is highly sequence diverse, is located at the Env apex and stabilizes the trimeric gp120 spike on the virion surface. It shields V3 and the coreceptor binding sites in the prefusion state and exposes them upon CD4 binding. Data from the RV144 human HIV-1 vaccine trial suggested that antibody responses targeting the V1V2 region inversely correlated with the risk of infection; thus, understanding the antigenic structure of V1V2 can contribute to vaccine design. We have determined a crystal structure of a V1V2 scaffold molecule (V1V2 ZM109 -1FD6) in complex with 830A, a human monoclonal antibody that recognizes a V1V2 epitope overlapping the integrin-binding motif in V2. The structure revealed that V1V2 assumes a five-stranded beta barrel structure with the region of the integrin-binding site (amino acids [aa] 179 to 181) included in a "kink" followed by an extra beta strand. The complete barrel structure naturally presents the glycans on its outer surface and packs into its core conserved hydrophobic residues, including the Ile at position 181 which was highly correlated with vaccine efficacy in RV144. IMPORTANCEData from the RV144 phase III clinical trial suggested that the presence of antibodies to the first and second variable regions (V1V2) of gp120 was associated with the modest protection afforded by the vaccine. V1V2 is a highly variable and immunogenic region of HIV-1 surface glycoprotein gp120, and structural information about this region and its antigenic landscape will be crucial in the design of an effective HIV-1 vaccine. We have determined a crystal structure of V1V2 in complex with human MAb 830A and have shown that MAb 830A recognizes a region overlapping the ␣47 integrin-binding site. We also showed that V1V2 forms a 5-stranded beta barrel, an elegant structure allowing sequence variations in the strand-connecting loops while preserving a conserved core. The HIV-1 envelope (Env) glycoprotein complex, consisting of glycoproteins gp120 and gp41, mediates the virus entry into the host cell. This heterotrimer is the major target for neutralizing antibodies (Abs) induced in HIV-1-infected patients and for HIV/ AIDS vaccine development (1). Glycoprotein gp120 has five variable and five conserved regions (2); the region consisting of the first and second variable regions (V1V2) is the most diverse in both sequence and length. V1V2, including residues 126 to 196 in the HXB2 numbering scheme (3), usually has two nested disulfide bonds; the V1 disulfide bond (between cysteine residues 131 and 157) is located within the V2 disulfide bond (between residues 126 and 196) (4). The average length of V1V2 is about 80 amino acids (aa), with a possibility of large length variations mostly derived from two regions, one in the middle of V1 and the other near the C-terminal end of V2. Recent data have shown that V1V2 is locate...
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens.
Programmed cell death protein 1 (PD-1) is an inhibitory receptor on T lymphocytes that is critical for modulating adaptive immunity. As such, it has been successfully exploited for cancer immunotherapy. Programmed death ligand 1 (PD-L1) and PD-L2 are ligands for PD-1; the former is ubiquitously expressed in inflamed tissues, whereas the latter is restricted to antigen-presenting cells. PD-L2 binds to PD-1 with 3-fold stronger affinity compared with PD-L1. To date, this affinity discrepancy has been attributed to a tryptophan (W110PD-L2) that is unique to PD-L2 and has been assumed to fit snuggly into a pocket on the PD-1 surface. Contrary to this model, using surface plasmon resonance to monitor real-time binding of recombinantly-expressed and -purified proteins, we found that W110PD-L2 acts as an “elbow” that helps shorten PD-L2 engagement with PD-1 and therefore lower affinity. Furthermore, we identified a “latch” between the C and D β-strands of the binding face as the source of the PD-L2 affinity advantage. We show that the 3-fold affinity advantage of PD-L2 is the consequence of these two opposing features, the W110PD-L2 “elbow” and a C–D region “latch.” Interestingly, using phylogenetic analysis, we found that these features evolved simultaneously upon the emergence of placental mammals, suggesting that PD-L2–affinity tuning was part of the alterations to the adaptive immune system required for placental gestation.
HIV-1 envelope gp120 is the target for neutralizing antibodies (NAbs) against the virus. Various approaches have been explored to improve immunogenicity of broadly neutralizing epitopes on this antigen with limited success. We previously demonstrated that immunogenicity of gp120 and especially its V3 epitopes was enhanced when gp120 was co-administered as immune-complex vaccines with monoclonal antibodies (mAb) to the CD4-binding site (CD4bs). To define the mechanisms by which immune complexes influence V3 immunogenicity, we compared gp120 complexed with mAbs specific for the C2 region (1006-30), the V2 loop (2158), or the CD4bs (654), and found that the gp120/654 and gp120/2158 complexes elicited anti-V3 NAbs, but the gp120/654 complex was the most effective. gp120 complexed with 654 F(ab′)2 was as potent, indicating that V3 immunogenicity is determined by the specificity of the mAb’s Fab fragment used to form the complexes. Importantly, the gp120/654 complex not only induced anti-gp120 antibodies (Abs) to higher titers, but also of greater avidity. The Abs were cross-reactive with V3 peptides from most subtype B and some subtype C isolates. Neutralization was detected only against Tier-1 HIV-1 pseudoviruses, while Tier-2 viruses, including the homologous JRFL strain, were not neutralized. However, JRFL produced in the presence of a mannosidase inhibitor was sensitive to anti-V3 NAbs in the immune sera. These results demonstrate that the gp120/654 complex is a potent immunogen for eliciting cross-reactive functional NAbs against V3 epitopes, of which exposure is determined by the specific compositions of glycans shrouding the HIV-1 envelope glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.