Velocity model building and impedance inversion generally suffer from a lack of intermediate wavenumber content in seismic data. Intermediate wavenumbers may be retrieved directly from seismic data sets if enough low frequencies are recorded. Over the past years, improvements in acquisition have allowed us to obtain seismic data with a broader frequency spectrum. To illustrate the benefits of broadband acquisition, notably the recording of low frequencies, we discuss the inversion of land seismic data acquired in Inner Mongolia, China. This data set contains frequencies from 1.5–80 Hz. We show that the velocity estimate based on an acoustic full‐waveform inversion approach is superior to one obtained from reflection traveltime inversion because after full‐waveform inversion the background velocity conforms to geology. We also illustrate the added value of low frequencies in an impedance estimate.
A B S T R A C TDense, wide-aperture and broad frequency band acquisition improves seismic imaging and potentially allows the use of full waveform inversion for velocity model building. The cost of dense acquisitions however limits its applicability. Blended or simultaneous shooting could lead to a good compromise between cost and dense acquisition, although the cross-talk between simultaneous sweeps may reduce imaging capabilities. Onshore, a compromise is achieved with distance separated simultaneous sweeping acquisition, because the shots are easily separated when the processing focuses on pre-critical reflected events. Full waveform inversion for velocity model building however relies on post-critical reflected, refracted and diving events. These events can interfere in a distance separated simultaneous sweeping acquisition. By using a single vibrator, single receiver data set recorded in Inner Mongolia, China, a distance separated simultaneous sweeping data set is created to study the robustness of full waveform inversion in this acquisition context. This data set is well suited for full waveform inversion since it contains frequencies down to 1.5 Hz and offsets up to 25 km. Full waveform inversion after a crude deblending of the distance separated simultaneous sweeping data set leads to a result very similar to the one obtained from the single vibrator, single receiver data set. The inversion of the blended data set gives a slightly less good result because of the cross-talk but it is still quite satisfactory.
As the demands of tight-oil Enhanced Oil Recovery (EOR) and the controlling of anthropogenic carbon emission have become global challenges, Carbon Capture Utilization and Sequestration (CCUS) has been recognized as an effective solution to resolve both needs. However, the influential factors of carbon dioxide (CO2) geological storage in low permeability reservoirs have not been fully studied. Based on core samples from the Huang-3 area of the Ordos Basin, the feasibility and influential factors of geological CO2 sequestration in the Huang-3 area are analyzed through caprock breakthrough tests and a CO2 storage factor experiment. The results indicate that capillary trapping is the key mechanism of the sealing effect by the caprock. With the increase of caprock permeability, the breakthrough pressure and pressure difference decreased rapidly. A good exponential relationship between caprock breakthrough pressure and permeability can be summarized. The minimum breakthrough pressure of CO2 in the caprock of the Huang-3 area is 22 MPa, and the breakthrough pressure gradient is greater than 100 MPa/m. Huang-3 area is suitable for the geological sequestration of CO2, and the risk of CO2 breakthrough in the caprock is small. At the same storage percentage, the recovery factor of crude oil in larger permeability core is higher, and the storage percentage decreases with the increase of recovery factor. It turned out that a low permeability reservoir is easier to store CO2, and the storage percentage of carbon dioxide in the miscible phase is greater than that in the immiscible phase. This study can provide empirical reference for caprock selection and safety evaluation of CO2 geological storage in low permeability reservoirs within Ordos Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.