Design and discovery of carrier-mediated modified pesticides are vital for reducing pesticide dosage and increasing utilization, yet it remains a great challenge due to limited insights into plant translocation mechanisms. Nanostructure/nanoparticle assisted laser desorption/ionization strategy has established itself as a preferential analytical tool for biological tissue analysis, whereas potential applications in plant sciences are hindered with regard to the inability to slice plant leaves and petals. Herein, we report gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for the spatiotemporal visualization of pesticide translocation in plant leaves. This approach plays a dual role in preserving spatial information and improving ionization efficiency for pesticides regardless of imaging artifacts due to homogenous AuNP deposition. Using this MSI platform, we proposed the elaborate plant translocation mechanism of agrochemicals for the first time, which is currently poorly understood. The dynamic processes of carrier-mediated pesticides can be clearly visualized, including crossing of plasma membranes by transporters, translocation downward in stems through the phloem, diffusion to the xylem and, conversely, accumulation at margins of the treated leaves. Moreover, this AuNP-assisted paper imprinting method could be highly compatible with laser-based MSI instruments, expediting researches across a broad range of fields, especially in nanomaterial development and life sciences.
Food safety issues caused by pesticide residue have exerted far-reaching impacts on human daily life, yet the available detection methods normally focus on surface residue rather than pesticide penetration to the internal area of foods. Herein, we demonstrated gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for monitoring pesticide migration behaviors in various fruits and vegetables (i.e., apple, cucumber, pepper, plum, carrot, and strawberry). By manually stamping food tissues onto AuNP-immersed paper, this method affords the spatiotemporal visualization of insecticides and fungicides within fruits and vegetables, avoiding tedious and time-consuming sample preparation. Using the established MSI platform, we can track the migration of insecticides and fungicides into the inner region of foods. The results revealed that both the octanol-water partition coefficient of pesticides and water content of garden stuffs could influence the discrepancy in the migration speed of pesticides into food kernels. Taken together, this nanopaper imprinting MSI is poised to be a powerful tool because of its simplicity, rapidity, and easy operation, offering the potential to facilitate further applications in food analysis. Moreover, new perspectives are given to provide guidelines for the rational design of novel pesticide candidates, reducing the risk of food safety issues caused by pesticide residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.