Design and discovery of carrier-mediated modified pesticides are vital for reducing pesticide dosage and increasing utilization, yet it remains a great challenge due to limited insights into plant translocation mechanisms. Nanostructure/nanoparticle assisted laser desorption/ionization strategy has established itself as a preferential analytical tool for biological tissue analysis, whereas potential applications in plant sciences are hindered with regard to the inability to slice plant leaves and petals. Herein, we report gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for the spatiotemporal visualization of pesticide translocation in plant leaves. This approach plays a dual role in preserving spatial information and improving ionization efficiency for pesticides regardless of imaging artifacts due to homogenous AuNP deposition. Using this MSI platform, we proposed the elaborate plant translocation mechanism of agrochemicals for the first time, which is currently poorly understood. The dynamic processes of carrier-mediated pesticides can be clearly visualized, including crossing of plasma membranes by transporters, translocation downward in stems through the phloem, diffusion to the xylem and, conversely, accumulation at margins of the treated leaves. Moreover, this AuNP-assisted paper imprinting method could be highly compatible with laser-based MSI instruments, expediting researches across a broad range of fields, especially in nanomaterial development and life sciences.
Nav1. 9 voltage-gated sodium channel is preferentially expressed in peripheral nociceptive neurons. Recent progresses have proved its role in pain sensation, but our understanding of Nav1.9, in general, has lagged behind because of limitations in heterologous expression in mammal cells. In this work, functional expression of human Nav1.9 (hNav1.9) was achieved by fusing GFP to the C-terminal of hNav1.9 in ND7/23 cells, which has been proved to be a reliable method to the electrophysiological and pharmacological studies of hNav1.9. By using the hNav1.9 expression system, we investigated the electrophysiological properties of four mutations of hNav1.9 (K419N, A582T, A842P, and F1689L), whose electrophysiological functions have not been determined yet. The four mutations significantly caused positive shift of the steady-state fast inactivation and therefore increased hNav1.9 activity, consistent with the phenotype of painful peripheral neuropathy. Meanwhile, the effects of inflammatory mediators on hNav1.9 were also investigated. Impressively, histamine was found for the first time to enhance hNav1.9 activity, indicating its vital role in hNav1.9 modulating inflammatory pain. Taken together, our research provided a useful platform for hNav1.9 studies and new insight into mechanism of hNav1.9 linking to pain.
Glaucocalyxin A is a natural ent-Kaurane diterpenoid. It has been widely studied for some important biological activities like cytotoxicity and anti-tumour, anti-bacterial, anti-oxidative, anti-coagulative, anti-thrombotic, immune and anti-neuroinflammatory activities. The aim of the present article is to review the available information on Glaucocalyxin A including sources, biological activities and derivatives and also have a look at the future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.