Infrared image recognition technology can work day and night and has a long detection distance. However, the infrared objects have less prior information and external factors in the real-world environment easily interfere with them. Therefore, infrared object classification is a very challenging research area. Manifold learning can be used to improve the classification accuracy of infrared images in the manifold space. In this article, we propose a novel manifold learning algorithm for infrared object detection and classification. First, a manifold space is constructed with each pixel of the infrared object image as a dimension. Infrared images are represented as data points in this constructed manifold space. Next, we simulate the probability distribution information of infrared data points with the Gaussian distribution in the manifold space. Then, based on the Gaussian distribution information in the manifold space, the distribution characteristics of the data points of the infrared image in the low-dimensional space are derived. The proposed algorithm uses the Kullback-Leibler (KL) divergence to minimize the loss function between two symmetrical distributions, and finally completes the classification in the low-dimensional manifold space. The efficiency of the algorithm is validated on two public infrared image data sets. The experiments show that the proposed method has a 97.46% classification accuracy and competitive speed in regards to the analyzed data sets.
Akkermansia muciniphila (A. muciniphila) is a mucin-degrading bacterium that resides in the mucus layer, but its potential in intestinal inflammatory diseases has sparked controversy. It is well known that both the consumption of fructose-containing beverages and psychological stress increase the risk of intestinal disease. Our results revealed that a high-fructose diet aggravated the damage to the jejunal mucosal barrier caused by restraint stress, reduced tight junction protein expression and the intestinal digestion and absorption capacity, disrupted the ability of Paneth cells to secrete antimicrobial peptides, and promoted the expression of inflammatory cytokines. A. muciniphila colonization enhanced the defense function of the mucosal barrier by enhancing the function of the NLRP6, promoting autophagy, maintaining the normal secretion of antimicrobial peptides in Paneth cells, promoting the expression of tight junction proteins, negatively regulating the NF-kB signaling pathway and inhibiting the expression of inflammatory cytokines. Our work indicates that A. muciniphila ameliorates the disruption of the intestinal mucosal barrier under high fructose and restraint stress. These results provided a rationale for the development of probiotic colonization for the prevention or treatment of intestinal diseases.
Purpose. In order to solve the problems of small face image samples, high size, low structure, no label, and difficulty in tracking and recapture in security videos, we propose a popular multiscale facial feature manifold (MSFFM) algorithm based on VGG16. Method. We first build the VGG16 architecture to obtain face features at different scales and construct a multiscale face feature manifold with face features at different scales as dimensions. At the same time, the recognition rate, accuracy rate, and running time are used to evaluate the performance of VGG16, LeNet-5, and DenseNet on the same database. Results. From the results of comparative experiments, it can be seen that the recognition rate and accuracy of VGG16 are the highest among the three networks. The recognition rate of VGG16 is 97.588%, and the accuracy is 95.889%. And the running time is only 3.5 seconds, which is 72.727% faster than LeNet-5 and 66.666% faster than DenseNet. Conclusion. The model proposed in this paper breaks through the key problem in the face detection and tracking problem in the public security field, predicts the position of the face target image in the time dimension manifold space, and improves the efficiency of face detection.
Objective: We propose a deep-learning-based underwater target detection system that can effectively solve the problem of underwater optical image target detection and recognition. Methods: In this paper, based on the depth of the underwater optical image target detection and recognition and using a learning model, we put forward corresponding solutions using the concept of style migration solutions, such as training samples. A lack of variability and poor generalization of practical applications presents a challenge for underwater object identification. The UW_YOLOv3 lightweight model was proposed to solve the problems of calculating energy consumption and storage resource limitations in underwater application scenarios. The detection and recognition module, based on deep learning, can deal with the degradation process of underwater imaging by embedding an image enhancement module into the detection and recognition module for the joint tuning and transferring of knowledge. Results: The detection accuracy of the UW_YOLOv3 model designed in this paper outperformed the lightweight algorithm YOLOV3-TINY by 7.9% at the same image scale input. Compared with other large algorithms, the detection accuracy was lower, but the detection speed was much higher. Compared with the SSD algorithm, the detection accuracy was only 4.7 lower; the speed was 40.9 FPS higher; and the rate was nearly 16 times higher than Faster R-CNN. When the input scale was 224, although part of the accuracy was lost, the detection speed doubled, reaching 156.9 FPS. Conclusion: Based on our framework, the problem of underwater optical image target detection and recognition can be effectively solved. Relevant studies have not only enriched the theory of target detection and glory, but have also provided optical glasses with a clear vision for appropriate underwater application systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.