This study investigates the time course and regional differences in age-related volume loss in cerebellum and brainstem. Three-dimensional (3D) magnetic resonance imaging (MRI) volumetry was used to measure the volumes of 11 regions in the cerebellum and three regions in the brainstem in 48 healthy volunteers (age 19.8-73.1 years). Landmark-adjusted lattices were used to divide the cerebellum into three radial (lobules I-V = lingula/lobulus/culmen, lobules VI-VII = declive/folium/tuber, lobules VIII-X = pyramis/uvula/nodulus) and three transverse subdivisions (vermis, medial, lateral hemisphere). The radial sectors extended laterally throughout the vermis and the medial hemisphere. The brainstem was divided into midbrain, metencephalon (pons and tegmentum pontis) and medulla. Total cerebellar volume marginally declined with age using a linear regression model. An exponential model better described the age dependency of total cerebellar volume. The curve predicted that the volume remained stable until age 50 years and declined thereafter. Volume loss in the cerebellar vermis was striking. Shrinkage in the medial hemisphere was markedly less and only the inferior sector showed a trendwise negative association with age. The lateral hemisphere was not affected by age. No age effects were found for total brainstem volume, metencephalon and medulla. Only the mid-brain showed a trend for age-related shrinkage. The mediolateral gradient of decreasing age effects is similar to the histological pattern of alcoholic cerebellar atrophy (although our subjects were non-alcoholics according to DSM-IIIR criteria and laboratory data) suggesting that a common factor is involved in both processes. In search for a cause of the regional vulnerability, vascular, functional, structural and molecular/genetic factors may be considered.
ObjectivesMetabolic changes in the substantia nigra of patients with Parkinson's disease were previously investigated in different molecular-pathological examinations. The aim of our study was the in vivo measurement of these alterations using three-dimensional magnetic resonance spectroscopic imaging.Methods21 patients with Parkinson's disease and 24 controls were examined using magnetic resonance spectroscopic imaging at 3 Tesla. The spectra of rostral and caudal substantia nigra regions were analyzed using LCModel. For spectral fitting, an adjusted basis data set with pathology-specific metabolites and macromolecules was used to better reproduce the in vivo spectra. To assess differences between both groups more accurately, especially in metabolites at lower concentrations, group-averaged spectra were evaluated in addition to the analysis of individual data.ResultsWe found significantly decreased N-acetylaspartate, choline, creatine, myo-inositol, glutathione and dopamine concentrations in patients with Parkinson's disease compared to controls, whereas glutamine+glutamate, γ-aminobutyric acid, and homovanillic acid were slightly increased. According to anatomical features, clear differences in the biochemical profiles were found between rostral and caudal substantia nigra voxels in both groups.ConclusionsReduced N-acetylaspartate and dopamine concentrations result from progressive degeneration of dopamine-producing neurons within the substantia nigra pars compacta. Decreased creatine levels can be interpreted as impaired energy metabolism due to mitochondrial dysfunction. Lower glutathione concentrations might be a cause or consequence of oxidative stress. Furthermore, slightly increased glutamine+glutamate and γ-aminobutyric acid levels are expected based on post mortem data in Parkinson's disease. To the best of our knowledge, this is the first non-invasive confirmation of these metabolic changes.
A new method was developed to measure total and regional cerebellar volumes using MRI. Previously, the volumes of the cerebellum and its substructure had been studied planimetrically. The new method uses three-dimensional semiautomated volumetry with focus on reliability and performance. The method consists of a manual presegmentation using landmark-adjusted planes followed by region-growing segmentation and calculation of volume. The cerebellum is partitioned into 11 regions defined by planes, which are adjusted for internal cerebellar landmarks (three radial regions inside the vermis that extend into the medial hemisphere (one-fourth of the transverse diameter of the hemisphere); one region in the lateral hemisphere (remaining three-fourths)). Forty-six healthy volunteers were examined and the effects of age, gender, and symmetry were estimated. Shrinkage in the vermis (especially anterior superior compartment) was marked. Age effects diminished laterally and were not observed in the lateral hemisphere. Age effects on the total cerebellar volume were marginal. Effects of gender and symmetry were nonsignificant. Technique and results are discussed and related to methods and findings of others.
equally to this work.q RSNA, 2016 Purpose:To perform a direct metabolic comparison of chronic lesions and diffusely injured normal-appearing white matter (NAWM) in multiple sclerosis (MS). Materials and Methods:In this institutional review board-approved study, with the written informed consent of all patients, two-dimensional magnetic resonance spectroscopic imaging data in 46 patients with relapsing-remitting MS (median disease duration, 0.8 year) were analyzed by using the spectral quantification tool LCModel. Metabolic patterns were evaluated for non-gadolinium-enhancing chronic lesions and the corresponding contralateral NAWM. The sensitivity of the method was assessed by reproducing the known metabolic differences between cortical gray matter (GM) and NAWM. In addition to individual spectra, averaged spectra were calculated by accumulating free induction decays over all subjects to yield an increased signal-to-noise ratio (SNR), and in turn, to allow improved curve fitting as demonstrated by lower error bounds for low-concentration metabolites. Metabolite concentrations were statistically tested for intraindividual differences (paired t tests) to avoid effects resulting from variations in disease severity or treatment. Results:Differences between the metabolite concentrations in the NAWM and the cortical GM were highly significant (P , .001), demonstrating the reliability of the spectral analysis used here. The spectral patterns of the individual and averaged spectra of chronic lesions and NAWM were qualitatively very similar at visual inspection. Furthermore, in the quantitative comparison, the estimated metabolite concentrations showed only slight differences (P . .07). Owing to increased SNRs in the averaged spectra compared with individual spectra (eg, for chronic lesions, 63 vs 28.4 6 4.1), it was possible to reliably (Cramér-Rao lower bound [CRLB], ,20%) estimate scyllo-inositol levels with a CRLB of 14%. Conclusion:These findings revealed that NAWM exhibits the same metabolic changes as chronic white matter lesions, even very early in the disease course, further supporting the view that such lesions may not be as relevant as widely assumed.q RSNA, 2016
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.