Porcine epidemic diarrhea virus (PEDV) is an economically devastating enteric disease in the swine industry. The virus infects pigs of all ages, but it cause severe clinical disease in neonatal suckling pigs with up to 100% mortality. Currently, available vaccines are not completely effective and feedback methods utilizing PEDV infected material has variable success in preventing reinfection. Comprehensive information on the levels and duration of effector/memory IgA and IgG antibody secreting B cell response in the intestines and lymphoid organs of PEDV-infected sows, and their association with specific antibody levels in clinical samples such as plasma, oral fluid, and feces is important. Therefore, our goal in this study was to quantify PEDV specific IgA and IgG B cell responses in sows at approximately 1 and 6 months post-infection in commercial swine herds, including parity one and higher sows. Our data indicated that evaluation of both PEDV specific IgA and IgG antibody levels in the plasma and oral fluid (but not feces) samples is beneficial in disease diagnosis. PEDV specific B cell response in the intestine and spleen of infected sows decline by 6 months, and this associates with specific antibody levels in the plasma and oral fluid samples; but the virus neutralization titers in plasma remains high beyond 6 months post-infection. In conclusion, in sows infected with PEDV the presence of effector/memory B cell response and strong virus neutralization titers in plasma up to 6 months post-infection, suggests their potential to protect sows from reinfection and provide maternal immunity to neonates, but challenge studies are required to confirm such responses.
Seneca Valley virus 1 (SVV-1) can cause vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. SVV-1-associated disease has been identified in pigs in several countries, namely USA, Canada, Brazil and China. Diagnostic tests are required to reliably detect this emerging virus, and this report describes the development and evaluation of a novel real-time (r) reverse-transcription (RT) PCR assay (rRT-PCR), targeting the viral polymerase gene (3D) of SVV-1. This new assay detected all historical and contemporary SVV-1 isolates examined (n=8), while no cross-reactivity was observed with nucleic acid templates prepared from other vesicular disease viruses or common swine pathogens. The analytical sensitivity of the rRT-PCR was 0.79 TCID/ml and the limit of detection was equivalent using two different rRT-PCR master-mixes. The performance of the test was further evaluated using pig nasal (n=25) and rectal swab samples (n=25), where concordant results compared to virus sequencing were generated for 43/50 samples. The availability of this assay, will enable laboratories to rapidly detect SVV-1 in cases of vesicular disease in pigs, negated for notifiable diseases, and could enable existing knowledge gaps to be investigated surrounding the natural epidemiology of SVV-1.
Background and ObjectivesInfluenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes.Methods and ResultsEach chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.ConclusionThis study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.
Differentiation of Brucella canis from other Brucella species are mainly performed through PCR-based methods and multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) procedures. Both PCR-based and MLVA methods are limited in discriminating B. canis strains. A new MLVA-13Bc method for B. canis genotyping was established by combining eight newly-developed VNTRs with five published ones. During 2010 and 2016, 377 B. canis PCR-positives were identified from 6,844 canine blood samples from 22 U.S. states, resulting in 229 B. canis isolates. The MLVA-13Bc method was able to differentiate each of these 229 isolates. The Hunter-Gaston Discriminatory Index of the individual VNTR loci ranged from 0.516 to 0.934 and the combined discriminatory index reached 1.000. Three major clusters (A, B and C) and 10 genotype groups were identified from the 229 B. canis isolates. Cluster A mainly contains genotype groups 1 and 2, and a few group 3 isolates; nearly all Cluster B isolates were from group 6; other genotype groups were classified into Cluster C. Our newly developed MLVA-13Bc assay is a highly discriminatory assay for B. canis genotyping, and can serve as a useful molecular epidemiological tool, especially for tracing the source of contamination in an event of a B. canis outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.