Context Solid organ transplant recipients have elevated cancer risk due to immunosuppression and oncogenic viral infections. Since most prior research has concerned kidney recipients, large studies that include recipients of differing organs can inform cancer etiology. Objective Describe the overall pattern of cancer among solid organ transplant recipients. Design Cohort study using linked data from the U.S. Scientific Registry of Transplant Recipients (1987–2008) and 13 state/regional cancer registries. Participants and Setting Solid organ transplant recipients in the U.S. Main Outcome Measure Standardized incidence ratios (SIRs) and excess absolute risks (EARs) assessing relative and absolute cancer risk in transplant recipients compared to the general population. Results Registry linkages yielded data on 175,732 solid organ transplants (58.4% kidney, 21.6% liver, 10.0% heart, 4.0% lung). Overall cancer risk was elevated (N=10,656 cases, incidence 1374.7 per 100,000 person-years; SIR 2.10, 95%CI 2.06–2.14; EAR 719.3, 95%CI 693.3–745.6, per 100,000 person-years). Risk was increased (p<0.001) for 32 different malignancies, some related to known infections (e.g., anal cancer, Kaposi sarcoma) and others unrelated (e.g., melanoma, thyroid and lip cancers). The most common malignancies with elevated risk were non-Hodgkin lymphoma (N=1504, incidence 194.0; SIR 7.54, 95%CI 7.17–7.93; EAR 168.3, 95%CI 158.6–178.4) and cancers of the lung (N=1344, incidence 173.4; SIR 1.97, 95%CI 1.86–2.08; EAR 85.3, 95%CI 76.2–94.8), liver (N=930, incidence 120.0; SIR 11.56, 95%CI 10.83–12.33; EAR 109.6, 95%CI 102.0–117.6), and kidney (N=752, incidence 97.0; SIR 4.65, 95%CI 4.32–4.99; EAR 76.1, 95%CI 69.3–83.3). Lung cancer risk was most elevated in lung recipients (SIR 6.13, 95%CI 5.18–7.21) but also increased among other recipients (SIR 1.46, 95%CI 1.34–1.59 for kidney; 1.95, 1.74–2.19 for liver; 2.67, 2.40–2.95 for heart). Liver cancer was elevated only among liver recipients (SIR 43.83, 95%CI 40.90–46.91), who manifested exceptional risk in the first 6 months (SIR 508.97, 95%CI 474.16–545.66) and continuing two-fold excess for 10–15 years (SIR 2.22, 95%CI 1.57–3.04). Among kidney recipients, kidney cancer was elevated (SIR 6.66, 95%CI 6.12–7.23) and bimodal in onset. Kidney cancer was also increased in liver and heart recipients (SIR 1.80, 95%CI 1.40–2.29, and 2.90, 2.32–3.59, respectively). Conclusions Recipients of a kidney, liver, heart, or lung transplant have an increased risk for diverse infection-related and unrelated cancers, compared with the general population.
Some autoimmune conditions are associated with increased risk of lymphoid malignancies, but information on specific malignancy subtypes is limited. From the U.S. Surveillance Epidemiology and End Results-Medicare database, we selected 44,350 lymphoid malignancy cases ( 67 years) and 122,531 population-based controls. Logistic regression was used to derive odds ratios (ORs) comparing the prevalence of autoimmune conditions in cases and controls, by lymphoid malignancy subtype, adjusted for gender, age at malignancy/selection, year of malignancy/selection, race and number of physician claims. The strongest associations observed by non-Hodgkin lymphoma (NHL) subtypes were diffuse large B-cell lymphoma with rheumatoid arthritis (OR 1.4, 95%CI
Cancer is an important cause of morbidity in the elderly, and many medical conditions and treatments influence cancer risk. The Surveillance, Epidemiology, and End Results (SEER)-Medicare database can be used to conduct population-based case-control studies that elucidate the etiology of cancer among the US elderly. SEER-Medicare links data on malignancies ascertained through SEER cancer registries to claims from Medicare, the US government insurance program for people over age 65 years. Under one approach described herein, elderly cancer cases are ascertained from SEER data (1987-2005). Matched controls are selected from a 5% random sample of Medicare beneficiaries. Risk factors of interest, including medical conditions and procedures, are identified by using linked Medicare claims. Strengths of this design include the ready availability of data, representative sampling from the US elderly population, and large sample size (e.g., under one scenario: 1,176,950 cases, including 221,389 prostate cancers, 185,853 lung cancers, 138,041 breast cancers, and 124,442 colorectal cancers; and 100,000 control subjects). Limitations reflect challenges in exposure assessment related to Medicare claims: restricted range of evaluable risk factors, short time before diagnosis/selection for ascertainment, and inaccuracies in claims. With awareness of limitations, investigators have in SEER-Medicare data a valuable resource for epidemiologic research on cancer etiology.
N2‐fixation by Rhizobium‐legume symbionts is of major ecological and agricultural importance, responsible for producing a substantial fraction of the biosphere's nitrogen. On the basis of 15N‐labelling studies, it had been generally accepted that ammonium is the sole secretion product of N2‐fixation by the bacteroid and that the plant is responsible for assimilating it into amino acids. However, this paradigm has been challenged in a recent 15N‐labelling study showing that soybean bacteroids only secrete alanine. Hitherto, nitrogen secretion has only been assessed from in vitro15N‐labelling studies of isolated bacteroids. We show that both ammonium and alanine are secreted by pea bacteroids. The in vitro partitioning between them will depend on whether the system is open or closed, as well as the ammonium concentration and bacteroid density. To overcome these limitations we identified and mutated the gene for alanine dehydrogenase (aldA) and demonstrate that AldA is the primary route for alanine synthesis in isolated bacteroids. Bacteroids of the aldA mutant fix nitrogen but only secrete ammonium at a significant rate, resulting in lower total nitrogen secretion. Peas inoculated with the aldA mutant are green and healthy, demonstrating that ammonium secretion by bacteroids can provide sufficient nitrogen for plant growth. However, plants inoculated with the mutant are reduced in biomass compared with those inoculated with the wild type. The labelling and plant growth studies suggest that alanine synthesis and secretion contributes to the efficiency of N2‐fixation and therefore biomass accumulation.
We present a mechanism of regulation of growth and activity of legume root nodules which is consistent with published experimental observations. The concentration of reduced nitrogen compounds, probably amino acids, flowing into the nodules from the phloem, is sensed by the nodules; growth and activity of the nodules is adjusted accordingly. In many legumes this response may involve changes in the oxygen diffusion resistance of the nodule cortex. A straightforward feedback mechanism in which nodule activity is lowered when reduced N in the phloem is high and increased when it is low is envisaged. Almost all import into nodules is via the phloem sap originating in the lower leaves. As a plant develops, these mature leaves no longer utilize nitrogen delivered in the xylem and so export it in the phloem. In plants with an adequate nitrogen supply (from nodules or combined nitrogen in soil), a high concentration of nitrogen containing compounds in the phloem from the lower leaves may inhibit nodule growth as well as activity. This suggestion is an alternative to the hypotheses of carbohydrate deprivation or nitrate inhibition which are commonly used to explain the effects of combined nitrogen on nodule growth and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.