Blowfly larvae and porcine tissue contaminated with gunshot residue (GSR) were collected during summer and winter months, over a 37-day and a 60-day sampling period, respectively. Wound samples were microwave-digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for the detection of antimony, barium, and lead. During summer, the 37-day sampling period encompassed all stages of decomposition, except skeletonization. The three elements were detected in larvae only on days 3 and 4 after death but were detected at significant levels in tissue samples throughout the entire sampling period. In winter, no significant decomposition was observed throughout the 60-day sampling. Although temperatures were too low for blowfly activity, the three elements were detected in the tissue samples at relatively constant, significant levels. Hence, GSR determination in tissue was more dependent on decomposition stage rather than time since death.
Smokeless powder is one of the most common types of explosives used in civilian ammunition and, hence, its detection and identification is of great forensic value. Based on comparison of physical properties, extraction yield in methanol, and the spectra obtained using nanoelectrospray ionization and multistage tandem mass spectrometry (MS/MS) in a quadrupole ion trap mass spectrometer, a method was developed to identify and differentiate unburned smokeless powders from different brands of ammunition. The mass spectrometry method was optimized for the simultaneous detection of the organic stabilizers commonly present in smokeless powders: methyl centralite, ethyl centralite, and diphenylamine. All but two of the powders were differentiated; however, the two that were not differentiated were produced by the same manufacturer. Gunshot residue from the cartridges was deposited on cotton cloth and collision-induced dissociation MS/MS was used to identify low levels of ethyl centralite in the residue, despite the presence of contaminants.
Porcine tissue samples shot with two different types of bullets, jacketed and nonjacketed, were collected in the fresh state and throughout moderate decomposition. Wound samples were microwave-digested and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) to detect all elements present at measurable levels in gunshot residue (GSR). Elements detected included antimony (Sb), barium (Ba), and lead (Pb), which are considered characteristic of GSR, as well as iron (Fe) and copper (Cu). These five elements were used to differentiate shot tissue and unshot tissue, as well as tissue shot by the two different bullet types, both in the fresh state and throughout moderate decomposition. The concentrations of Cu, Sb, and Pb were able to distinguish the two bullet types in fresh tissue samples at the 95% confidence level. Cu and Pb were able to differentiate the bullet types throughout moderate decomposition at the 99% confidence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.