BackgroundPlasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers. The discovery of blood-based biomarkers associated with ELVs requires methods that isolate high yields of these EVs without significant contamination with highly abundant plasma proteins and lipoproteins. The rising interest in blood-based EV-associated biomarkers has led to the rapid development of novel EV isolation methods. However, the field suffers from a lack of standardization and often, new techniques are used without critical evaluation. Size exclusion chromatography (SEC) has become the method of choice for rapid isolation of relatively pure EVs from plasma, yet it has technical limitations for certain downstream applications. The recently released exoEasy kit (Qiagen) is a new membrane affinity spin column method for the isolation of highly pure EVs from biofluids with the potential to overcome most of the limitations of SEC.MethodsBy using multiple complementary techniques we assessed the performance of the exoEasy kit in isolating ELVs from 2 ml of human plasma and compared it with the SEC qEV column (Izon Science).ResultsOur data show that exoEasy kit isolates a heterogenous mixture of particles with a larger median diameter, broader size range and a higher yield than the SEC qEV column. The exclusive presence of small RNAs in the particles and the total RNA yield were comparable to the SEC qEV column. Despite being less prone to low density lipoprotein contamination than the SEC qEV column, the overall purity of exoEasy kit EV preparations was suboptimal. The low particle-protein ratio, significant amount of albumin, very low levels of exosome-associated proteins and propensity to triglyceride-rich lipoprotein contamination suggest isolation of mainly non-ELVs and co-isolation of plasma proteins and certain lipoproteins by the exoEasy kit.ConclusionsWe demonstrate that performance of exoEasy kit for the isolation of ELVs for biomarker discovery is inferior to the SEC qEV column. This comprehensive evaluation of a novel EV isolation method contributes to the acceleration of the discovery of EV-associated biomarkers and the development of EV-based diagnostics.Electronic supplementary materialThe online version of this article (10.1186/s12967-017-1374-6) contains supplementary material, which is available to authorized users.
Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. We present evidence that the Vpx proteins of HIV-2/SIVSM promote virus infection by antagonizing an antiviral restriction in macrophages. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in trans overcame the restriction to HIV-1 and SIV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. Our results indicate that macrophage harbor a potent antiviral restriction and that primate lentiviruses have evolved Vpx to counteract this restriction.
The HIV-1 protein Vif, essential for in vivo viral replication1–4, targets the human DNA-editing enzyme, APOBEC3G (A3G)5, which inhibits replication of retroviruses and hepatitis B virus6,7. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G8, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule–based new therapies for HIV infection or for enhancing innate immunity against viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.