The accuracy of quantitative absorption spectroscopy depends on correctly distinguishing molecular absorption signatures in a measured transmission spectrum from the varying intensity or 'baseline' of the light source. Baseline correction becomes particularly difficult when the measurement involves complex, broadly absorbing molecules or non-ideal transmission effects such as etalons. We demonstrate a technique that eliminates the need to account for the laser intensity in absorption spectroscopy by converting the measured transmission spectrum of a gas sample to a modified form of the time-domain molecular free induction decay (m-FID) using a cepstral analysis technique developed for audio signal processing. Much of the m-FID signal is temporally separated from and independent of the source intensity, and this portion can be fit directly with a model to determine sample gas properties without correcting for the light source intensity. We validate the new approach in several complex absorption spectroscopy scenarios and discuss its limitations. The technique is applicable to spectra obtained with any absorption spectrometer and provides a fast and accurate approach for analyzing complex spectra. AbstractThis document provides supplementary material for "Baseline-free Quantitative Absorption Spectroscopy Based on Cepstral Analysis." Here, we include further details of the spectral model used to fit the broadband spectrum of ethane and methane. We also compare the two sources of absorption cross section data used to generate and fit a simulated spectrum of four broadly absorbing compounds in the mid-infrared. We give a full table of fit results for the simulated MIR spectrum to accompany an abbreviated version in the full text.
We demonstrate fiber mode-locked dual frequency comb spectroscopy for broadband, high resolution measurements in a rapid compression machine (RCM). We apply an apodization technique to improve the short-term signal-to-noise-ratio (SNR), which enables broadband spectroscopy at combustionrelevant timescales. We measure the absorption on 24345 individual wavelength elements (comb teeth) between 5967 and 6133 cm -1 at 704-µs time resolution during a 12-ms compression of a CH4-N2 mixture. We discuss the effect of the apodization technique on the absorption spectra, and apply an identical effect to the spectral model during fitting to recover the mixture temperature. The fitted temperature is compared against an adiabatic model, and found to be in good agreement with expected trends. This work demonstrates the potential of DCS to be used as an in situ diagnostic tool for broadband, high resolution, measurements in engine-like environments.
Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes microseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 μs time resolution. We achieve this by filtering the comb spectra using portable Fabry-Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm -1 bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm -1 (750 comb teeth) spectrum of CO around 6330 cm -1 in 11μs. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octavespanning spectrum of robust and portable fiber mode-locked frequency combs I.
This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity ( I o ) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently from I o . However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimated I o and simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimated I o , which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene–air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was ≈ 1.5 to 10 times smaller than that provided using traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.