Bakuchiol was isolated from the seeds of Psoralea corylifolia, a tree native to China with various uses in traditional medicine, followed by extraction with ether and column chromatography combined with silica gel and octyldecyl silane. In this study, the antimicrobial activities of bakuchiol against some oral microorganisms were evaluated in vitro. The cell growth of Streptococcus mutans was inhibited in a bakuchiol concentrationdependent manner, and growth of S. mutans was completely prevented by 20 g of bakuchiol per ml. The bactericidal effect of bakuchiol on S. mutans was dependent on temperature and stable under the following conditions: sucrose, 0 to 10% (wt/vol); pH, 3.0 to 7.0; organic acids (3% [wt/vol] citric and malic acids). Bakuchiol showed bactericidal effects against all bacteria tested, including S. mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus sobrinus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Actinomyces viscosus, and Porphyromonas gingivalis, with MICs ranging from 1 to 4 g/ml and the sterilizing concentration for 15 min ranging from 5 to 20 g/ml. Furthermore, bakuchiol was also effective against adherent cells of S. mutans in water-insoluble glucan in the presence of sucrose and inhibited the reduction of pH in the broth. Thus, bakuchiol would be a useful compound for development of antibacterial agents against oral pathogens and has great potential for use in food additives and mouthwash for preventing and treating dental caries.
Licochalcone A was isolated from the roots of licorice, Glycyrrhiza inflata, which has various uses in the food and pharmaceutical industries; isolation was followed by extraction with ethanol and column chromatography with silica gel. In this study, the activities of licochalcone A against some food contaminant microorganisms were evaluated in vitro. The vegetative cell growth of Bacillus subtilis was inhibited in a licochalcone A concentration-dependent manner and was completely prevented by 3 g of licochalcone A/ml. Licochalcone A showed a high level of resistance to heating at 80 to 121°C for 15 min. Licochalcone A did not inhibit the germination of heat-treated spores of B. subtilis induced by L-alanine. Licochalcone A showed effects against all gram-positive bacteria tested and especially was effective against all Bacillus spp. tested, with MICs of 2 to 3 g/ml, but was not effective against gram-negative bacteria or eukaryotes at 50 g/ml. Although the cationic antimicrobial peptides protamine and -poly-L-lysine resulted in the loss of antimicrobial activity in the presence of either 3% (wt/vol) NaCl or protease at 20 g/ml, the antibacterial activity of licochalcone A was resistant to these conditions. Thus, licochalcone A could be a useful compound for the development of antibacterial agents for the preservation of foods containing high concentrations of salts and proteases, in which cationic peptides might be less effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.