Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).
In the article a description of the behaviour of metallic layers created in the process of physical vacuum deposition on a composite textile substrates during their cyclical bending process is presented. Either the results of experimental research or the theoretical considerations of changes in the structure resistance as a function of the number of fatigue cycles are presented. It was confirmed mathematically that at the beginning of the bending process, in the case of a small number of bends, single cracks appear on the surface of the layer. After exceeding a certain number of bends, the nature of defects on the surface of the layer changes and the dominating mechanism of changes is the widening and elongation of already existing cracks. It has been confirmed mathematically that changes in resistance in these cases depend respectively on the number of bending cycles and next on quadratic value of number of cycles. A correspondence between the mathematical description and experimental results was obtained.
In this paper, the results of mechanical strength tests of thin conductive Ag and Au layers created on Cordura composite substrate using the thermal vapor deposition method are presented. The resistance of the conductive layers to the bending and tensile stresses was tested and changing the surface resistance of the test structures was accepted as a criterion. The layers created on unmodified and plasma-treated surfaces have been examined. As a result of the surface modification, the electrical and mechanical properties of the thin Ag and Au metal structures have been improved. The results of measurements of surface resistance changes during strength tests and SEM microscopic studies of stressed samples indicate the high mechanical strength of the electroconductive layers deposited on Cordura, which may be the basis for the application of such technology in textronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.