A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the single crystal diamond cutting tools having the sharp cutting edge. However, the diamond cutting tools having small chamfer at the cutting edge are usually used in practical machining shops. In addition, studies on the relationship between the tool wear and the machined surface have been reported little although the relationship is important in practical applications. In this study, ultra-precision cutting of single crystal silicon, using cutting fluids, feed rate, and depth of cut as experimental parameters, were carried out by using the single crystal diamond cutting tools having small chamfer and large nose radius, and effects of the cutting fluids, the feed rate, and the depth of cut on the machining accuracy and tool wear were studied. As a result, the optimum cutting conditions was obtained as follows: the cutting fluid was kerosene, the feed rate was 2.0μm/rev, and the depth of cut was 1.0μm.
Large wear of diamond tools for ultra-precision cutting of soft metals deteriorates quality of machined surface, and the worn tools have to be replaced with new tools when the tool wear reaches limited wear land width of cutting edge generating finished surface. However, it is difficult to predict the tool life since all cutting tools have individual tool life. Therefore, the purpose of this study is to estimate wear land width of cutting edge of a single crystal diamond tool having large nose radius by using static cutting forces during machining. As a result of the cutting tests and measurements, it was found that the ratio of thrust force to principal force had good relation with the ratio of flank wear land area to cutting cross section area. Furthermore, according to some detailed observation of flank wear, width of flank wear land was greatly related to uncut chip thickness obtained under different cutting conditions and it was found that width of flank wear land could be estimated by measured static cutting forces and cutting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.