Authorship note: KJL and DK are co-senior authors. Conflict of interest: DK serves on The Scientific Advisory Board of and receives research support from Compass Therapeutics. DK and KJL have a pending patent entitled "Compositions and methods for detecting CCR2 receptors" (US patent application no. 15/611,577).
All cells have intricately coupled sensing and signaling mechanisms that regulate the cellular outcome following exposure to genotoxic agents such as ionizing radiation (IR). In the IR-induced signaling pathway, specific protein events, such as ataxia-telangiectasia mutated protein (ATM) activation and histone H2AX phosphorylation (;-H2AX), are mechanistically well characterized. How these mechanisms can be altered, especially by clinically relevant agents, is not clear. Here we show that hyperthermia, an effective radiosensitizer, can induce several steps associated with IR signaling in cells. Hyperthermia induces ;-H2AX foci formation similar to foci formed in response to IR exposure, and heat-induced ;-H2AX foci formation is dependent on ATM but independent of heat shock protein 70 expression. Hyperthermia also enhanced ATM kinase activity and increased cellular ATM autophosphorylation. The hyperthermia-induced increase in ATM phosphorylation was independent of Mre11 function. Similar to IR, hyperthermia also induced MDC1 foci formation; however, it did not induce all of the characteristic signals associated with irradiation because formation of 53BP1 and SMC1 foci was not observed in heated cells but occurred in irradiated cells. Additionally, induction of chromosomal DNA strand breaks was observed in IR-exposed but not in heated cells. These results indicate that hyperthermia activates signaling pathways that overlap with those activated by IR-induced DNA damage. Moreover, prior activation of ATM or other components of the IR-induced signaling pathway by heat may interfere with the normal IRinduced signaling required for chromosomal DNA doublestrand break repair, thus resulting in increased cellular radiosensitivity. [Cancer Res 2007;67(7):3010-7]
The p53 tumor suppressor protein induces cell cycle arrest or apoptosis in response to cellular stresses. We have identi¢ed PRG3 (p53-responsive gene 3), which is induced speci¢cally under p53-dependent apoptotic conditions in human colon cancer cells, and encodes a novel polypeptide of 373 amino acids with a predicted molecular mass of 40.5 kDa. PRG3 has signi¢cant homology to bacterial oxidoreductases and the apoptosis-inducing factor, AIF, and the gene was assigned to chromosome 10q21.3^q22.1. Expression of PRG3 was induced by the activation of endogenous p53 and it contains a p53-responsive element. Unlike AIF, PRG3 localizes in the cytoplasm and its ectopic expression induces apoptosis. An amino-terminal deletion mutant of PRG3 that lacks a putative oxidoreductase activity retains its apoptotic activity, suggesting that the oxidoreductase activity is dispensable for the apoptotic function of PRG3. The PRG3 gene is thus a novel p53 target gene in a p53-dependent apoptosis pathway. ß
It is well established that maladaptive innate immune responses to sterile tissue injury represent a fundamental mechanism of disease pathogenesis. In the context of cardiac ischemia reperfusion injury, neutrophils enter inflamed heart tissue, where they play an important role in potentiating tissue damage and contributing to contractile dysfunction. The precise mechanisms that govern how neutrophils are recruited to and enter the injured heart are incompletely understood. Using a model of cardiac transplant–mediated ischemia reperfusion injury and intravital 2-photon imaging of beating mouse hearts, we determined that tissue-resident CCR2+ monocyte–derived macrophages are essential mediators of neutrophil recruitment into ischemic myocardial tissue. Our studies revealed that neutrophil extravasation is mediated by a TLR9/MyD88/CXCL5 pathway. Intravital 2-photon imaging demonstrated that CXCL2 and CXCL5 play critical and nonredundant roles in guiding neutrophil adhesion and crawling, respectively. Together, these findings uncover a specific role for a tissue-resident monocyte-derived macrophage subset in sterile tissue inflammation and support the evolving concept that macrophage ontogeny is an important determinant of function. Furthermore, our results provide the framework for targeting of cell-specific signaling pathways in myocardial ischemia reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.