Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.
BackgroundThe development of linkage disequilibrium (LD) maps and the characterization of haplotype block structure at the population level are useful parameters for guiding genome wide association (GWA) studies, and for understanding the nature of non-linear association between phenotypes and genes. The elucidation of haplotype block structure can reduce the information of several single nucleotide polymorphisms (SNP) into the information of a haplotype block, reducing the number of SNPs in a coherent way for consideration in GWA and genomic selection studies.ResultsThe maximum average LD, measured by r2 varied between 0.33 to 0.40 at a distance of < 2.5 kb, and the minimum average values of r2 varied between 0.05 to 0.07 at distances ranging from 400 to 500 kb, clearly showing that the average r2 reduced with the increase in SNP pair distances. The persistence of LD phase showed higher values at shorter genomic distances, decreasing with the increase in physical distance, varying from 0.96 at a distance of < 2.5 kb to 0.66 at a distance from 400 to 500 kb. A total of 78% of all SNPs were clustered into haplotype blocks, covering 1,57 Mb of the total autosomal genome size.ConclusionsThis study presented the first high density linkage disequilibrium map and haplotype block structure for a composite beef cattle population, and indicates that the high density SNP panel over 700 k can be used for genomic selection implementation and GWA studies for Canchim beef cattle.
BackgroundNelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.ResultsOur results indicate a lack of structuring between the individuals studied since principal component analyses were not able to differentiate families by its sires or by its ancestral lineages. The application of the AWM/PCIT methodology revealed a trio of transcription factors (comprising VDR, LHX9 and ZEB1) which in combination connected 66 genes through 359 edges and whose biological functions were inspected, some revealing to participate in biological growth processes in literature searches.ConclusionsThe diversity of the Nelore sample studied is not high enough to differentiate among families neither by sires nor by using the available ancestral lineage information. The gene networks constructed from the AWM/PCIT methodology were a useful alternative in characterizing genes and gene networks that were allegedly influential in growth and meat quality traits in Nelore cattle.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2535-3) contains supplementary material, which is available to authorized users.
BackgroundMeat quality involves many traits, such as marbling, tenderness, juiciness, and backfat thickness, all of which require attention from livestock producers. Backfat thickness improvement by means of traditional selection techniques in Canchim beef cattle has been challenging due to its low heritability, and it is measured late in an animal’s life. Therefore, the implementation of new methodologies for identification of single nucleotide polymorphisms (SNPs) linked to backfat thickness are an important strategy for genetic improvement of carcass and meat quality.ResultsThe set of SNPs identified by the random forest approach explained as much as 50% of the deregressed estimated breeding value (dEBV) variance associated with backfat thickness, and a small set of 5 SNPs were able to explain 34% of the dEBV for backfat thickness. Several quantitative trait loci (QTL) for fat-related traits were found in the surrounding areas of the SNPs, as well as many genes with roles in lipid metabolism.ConclusionsThese results provided a better understanding of the backfat deposition and regulation pathways, and can be considered a starting point for future implementation of a genomic selection program for backfat thickness in Canchim beef cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.