Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims. The first systematic survey of spectrally resolved water emission in 29 low-mass (L < 40 L ) protostellar objects is presented. The sources cover a range of luminosities and evolutionary states. The aim is to characterise the line profiles to distinguish physical components in the beam and examine how water emission changes with protostellar evolution. Methods. H 2 O was observed in the ground-state 1 10 -1 01 transition at 557 GHz (E up /k B ∼ 60 K) as single-point observations with the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel in 29 deeply embedded Class 0 and I low-mass protostars. Complementary far-IR and sub-mm continuum data (including PACS data from our programme) are used to constrain the spectral energy distribution (SED) of each source. H 2 O intensities are compared to inferred envelope properties, e.g., mass and density, outflow properties and CO 3-2 emission. Results. H 2 O emission is detected in all objects except one (TMC1A). The line profiles are complex and consist of several kinematic components tracing different physical regions in each system. In particular, the profiles are typically dominated by a broad Gaussian emission feature, indicating that the bulk of the water emission arises in outflows, not in the quiescent envelope. Several sources show multiple shock components appearing in either emission or absorption, thus constraining the internal geometry of the system. Furthermore, the components include inverse P-Cygni profiles in seven sources (six Class 0, one Class I) indicative of infalling envelopes, and regular P-Cygni profiles in four sources (three Class I, one Class 0) indicative of expanding envelopes. Molecular "bullets" moving at > ∼ 50 km s −1 with respect to the source are detected in four Class 0 sources; three of these sources were not known to harbour bullets previously. In the outflow, the H 2 O/CO abundance ratio as a function of velocity is nearly the same for all line wings, increasing from 10 −3 at low velocities (<5 km s −1 ) to > ∼ 10 −1 at high velocities (>10 km s −1 ). The water abundance in the outer cold envelope is low, > ∼ 10 −10 . The different H 2 O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H 2 O emission all but disappears.
Context. With the Herschel Space Observatory, lines of simple molecules (C + , O, and high-J lines of CO, J up 14) have been observed in the atmosphere of protoplanetary disks. When combined with ground-based data on [C i], all principle forms of carbon can be studied. These data allow us to test model predictions for the main carbon-bearing species and verify the presence of a warm surface layer. The absence of neutral carbon [C i], which is predicted by models to be strong, can then be interpreted together with ionized carbon [C ii] and carbon monoxide. Aims. We study the gas temperature, excitation, and chemical abundance of the simple carbon-bearing species C, C + , and CO, as well as O by the method of chemical-physical modeling. Using the models, we explore the sensitivity of the lines to the entering parameters and constrain the region from which the line radiation emerges. Methods. Numerical models of the radiative transfer in the lines and dust are used together with a chemical network simulation and a calculation of the gas energetics to obtain the gas temperature. We present our new model, which is based on our previous models but includes several improvements that we report in detail, together with the results of benchmark tests. Results. A model of the disk around the Herbig Be star HD 100546 is able to reproduce the CO ladder together with the atomic finestructure lines of [O i] and either [C i] or [C ii]. We find that the high-J lines of CO can only be reproduced by a warm atmosphere with T gas T dust . The low-J lines of CO, observable from the ground, are dominated by the outer disk with a radius of several 100 AU, while the high-J CO observable with Herschel-PACS are dominated from regions within some tens of AU. The spectral profiles of high-J lines of CO are predicted to be broader than those of the low-J lines. We study the effect of several parameters including the size of the disk, the gas mass of the disk, the PAH abundance and distribution, and the amount of carbon in the gas phase. Conclusions. The main conclusions of our work are (i) only a warm atmosphere with T gas T dust can reproduce the CO ladder. (ii) The CO ladder together with [O i] and the upper limit to [C i] can be reproduced by models with a high gas/dust ratio and a low abundance of volatile carbon. These models however produce too small amounts of [C ii]. Models with a low gas/dust ratio and more volatile carbon also reproduce CO and [O i], are in closer agreement with observations of [C ii], but overproduce [C i]. Owing to the uncertain origin of the [C ii] emission, we prefer the high gas/dust ratio models, indicating a low abundance of volatile carbon.
Context. Many chemical changes occur during the collapse of a molecular cloud to form a low-mass star and the surrounding disk. One-dimensional models have been used so far to analyse these chemical processes, but they cannot properly describe the incorporation of material into disks. Aims. The goal of this work is to understand how material changes chemically as it is transported from the cloud to the star and the disk. Of special interest is the chemical history of the material in the disk at the end of the collapse. Methods. A two-dimensional, semi-analytical model is presented that, for the first time, follows the chemical evolution from the pre-stellar core to the protostar and circumstellar disk. The model computes infall trajectories from any point in the cloud and tracks the radial and vertical motion of material in the viscously evolving disk. It includes a full time-dependent radiative transfer treatment of the dust temperature, which controls much of the chemistry. A small parameter grid is explored to understand the effects of the sound speed and the mass and rotation of the cloud. The freeze-out and evaporation of carbon monoxide (CO) and water (H 2 O), as well as the potential for forming complex organic molecules in ices, are considered as important first steps towards illustrating the full chemistry. Results. Both species freeze out towards the centre before the collapse begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those parts of the disk that cool below the CO desorption temperature of ∼18 K. Water remains solid almost everywhere during the infall and disk formation phases and evaporates within ∼10 AU of the star. Mixed CO-H 2 O ices are important in keeping some solid CO above 18 K and in explaining the presence of CO in comets. Material that ends up in the planet-and comet-forming zones of the disk (∼5−30 AU from the star) is predicted to spend enough time in a warm zone (several 10 4 yr at a dust temperature of 20−40 K) during the collapse to form first-generation complex organic species on the grains. The dynamical timescales in the hot inner envelope (hot core or hot corino) are too short for abundant formation of second-generation molecules by high-temperature gas-phase chemistry.
Context. Understanding the physical phenomena involved in the earlierst stages of protostellar evolution requires knowledge of the heating and cooling processes that occur in the surroundings of a young stellar object. Spatially resolved information from its constituent gas and dust provides the necessary constraints to distinguish between different theories of accretion energy dissipation into the envelope. Aims. Our aims are to quantify the far-infrared line emission from low-mass protostars and the contribution of different atomic and molecular species to the gas cooling budget, to determine the spatial extent of the emission, and to investigate the underlying excitation conditions. Analysis of the line cooling will help us characterize the evolution of the relevant physical processes as the protostar ages. Methods. Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied in the context of the WISH key program. For most targets, the spectra include many wavelength intervals selected to cover specific CO, H 2 O, OH, and atomic lines. For four targets the spectra span the entire 55-200 μm region. The PACS field-of-view covers ∼47 with the resolution of 9.4 . Results. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 out of 18 objects (except TMC1A), including 5 Class I sources. The high-excitation H 2 O 8 18 -7 07 63.3 μm line (E u /k B = 1071 K) is detected in 7 sources. CO transitions from J = 14−13 up to J = 49−48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ∼350 K and ∼700 K. H 2 O has typical excitation temperatures of ∼150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern that depends on the species and the transition. In the extended sources, emission is stronger off source and extended on ≥10 000 AU scales; in the compact sample, more than half of the flux originates within 1000 AU of the protostar. The Conclusions. The PACS data probe at least two physical components. The H 2 O and CO emission very likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, most likely resulting from H 2 O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [O i] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H 2 O and CO, with the fraction contributed by [O i] increasing for Class I sources. Consistent with previous studies, the ratio of total far-infrared line emission over bolometric luminosity decreases with the evolutionary state.
Abstract. We present detailed thermal and gas-phase chemical models for the envelope of the massive star-forming region AFGL 2591. By considering both time-and space-dependent chemistry, these models are used to study both the physical structure proposed by van der Tak et al. (1999, as well as the chemical evolution of this region. The model predictions are compared with observed abundances and column densities for 29 species. The observational data cover a wide range of physical conditions within the source, but significantly probe the inner regions where interesting high-temperature chemistry may be occurring. Taking appropriate care when comparing models with both emission and absorption measurements, we find that the majority of the chemical structure can be well-explained. In particular, we find that the nitrogen and hydrocarbon chemistry can be significantly affected by temperature, with the possibility of high-temperature pathways to HCN. While we cannot determine the sulphur reservoir, the observations can be explained by models with the majority of the sulphur in CS in the cold gas, SO2 in the warm gas, and atomic sulphur in the warmest gas. Because the model overpredicts CO2 by a factor of 40, various high-temperature destruction mechanisms are explored, including impulsive heating events. The observed abundances of ions such as HCO + and N2H + and the cold gas-phase production of HCN constrain the cosmic-ray ionization rate to ∼5.6 × 10 −17 s −1 , to within a factor of three. Finally, we find that the model and observations can simultaneously agree at a reasonable level and often to within a factor of three for 7 × 10 3 ≤ t(yrs) ≤ 5 × 10 4 , with a strong preference for t ∼ 3 × 10 4 yrs since the collapse and formation of the central luminosity source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.