Aims. We present a hot white dwarf (WD) luminosity function (LF) using data taken from the Sloan Digital Sky Survey (SDSS) Data Release 4. We present and discuss a combined LF, along with separate DA and non-DA as LFs. We explore the completeness of our LFs and interpret a sudden drop in the non-DA LF near 2 M bol as a transition of the non-DA WD atmosphere into the DA one during WD evolution. Our LF extends roughly between −0.5 < M bol < 7 or equivalently, ∼120 000 K > T eff > ∼25 000 K. Our LF should now be useful for estimates of recent star formation and for studies of neutrino and other potential particle emission losses in hot WDs. Methods. To create a sample whose completeness can be characterized fully, we used stars whose spectra were obtained via the SDSS's "hot standard" target selection criteria. The hot standard stars were purposefully targeted to a high level of completeness by the SDSS for calibration purposes. We are fortunate that many of them are hot white dwarfs stars. We further limited the sample to stars with fitted temperatures exceeding 23 500 K and log g > 7.0. We determined stellar distances for our sample based on their absolute SDSS g filter magnitudes, derived from WD stellar atmosphere model fits to the SDSS stellar spectra. Results. We compared our LF with those of other researchers where overlap occurs; however, our LFs are unique in their extension to the most luminous/hottest WDs. The cool end of our LF connects with the hot end of previously determined SDSS WD LFs and agreement here is quite good. It is also good with previous non-SDSS WD LFs. We note distinct differences between the DA and non-DA LFs and discuss the reliability of the DA LF at its hot end. We have extended the range of luminosities covered in the most recent WD LFs. The SDSS sample is understood quite well and its exploration should contribute to a number of new insights into early white dwarf evolution.
Context. The Sloan Digital Sky Survey Data Release 4 has provided spectra of several new PG 1159 stars and DO white dwarfs. This increase in known hot H-deficient compact objects significantly improves the statistics and helps to investigate late stages of stellar evolution. Aims. From the optical SDSS spectra, effective temperatures and surface gravities are derived in order to place the observed objects in an evolutionary context. Especially the connection between PG 1159 stars and DO white dwarfs shall be investigated. Methods. Using our non-LTE model atmospheres and applying χ 2 -fitting techniques, we determine stellar parameters and their errors. We derive total stellar masses for the DO white dwarfs using model evolutionary tracks. Results. We confirm three PG 1159 stars, with one showing ultra-high excitation ion features, and one sdO which we originally classified as a PG 1159 star. Additionally, we re-analysed the known PG 1159 star, PG 1424+535, with our new models. Furthermore, we present the first spectral analyses of thirteen DO white dwarfs, three of which show M-star features in their spectra, while two display ultra-high excitation ion features.
Aims. The archival spectrum of SDSS J212531.92−010745.9 shows not only the typical signature of a PG 1159 star, but also indicates the presence of a companion. Our aim was the proof of the binary nature of this object and the determination of its orbital period. Methods. We performed time-series photometry of SDSS J212531.92−010745.9. We observed the object during 10 nights, spread over one month, with the Tübingen 80 cm and the Göttingen 50 cm telescopes. We fitted the observed light curve with a sine and simulated the light curve of this system with the nightfall program. Furthermore, we compared the spectrum of SDSS J212531.92−010745.9 with NLTE models, the results of which also constrain the light curve solution.Results. An orbital period of 6.95616(33) h with an amplitude of 0.354(3) mag is derived from our observations. A pulsation period could not be detected. For the PG 1159 star we found, as preliminary results from comparison with our NLTE models, T eff ∼ 90 000 K, log g ∼ 7.60, and the abundance ratio C/He ∼ 0.05 by number fraction. For the companion we obtained with a mean radius of 0.4 ± 0.1 R , a mass of 0.4 ± 0.1 M , and a temperature of 8200 K on the irradiated side, good agreement between the observed light curve and the nightfall simulation, but we do not regard those values as final.
Context. A noticeable fraction of subdwarf B stars shows either short-period (p-mode) or long-period (g-mode) luminosity variations, with two objects so far known to exhibit hybrid behaviour, i.e. showing both types of modes at the same time. The pulsating subdwarf B star V 391 Pegasi (or HS 2201+2610), which is close to the two known hybrid pulsators in the log g-T eff plane, has recently been discovered to host a planetary companion. Aims. In order to learn more about the planetary companion and its possible influence on the evolution of its host star (subdwarf B star formation is still not well understood), an accurate characterisation of the host star is required. As part of an ongoing effort to significantly improve the asteroseismic characterisation of the host star, we investigate the low-frequency behaviour of HS 2201+2610. Methods. We obtained rapid high signal-to-noise photometric CCD (B-filter) and PMT (clear-filter) data at 2 m-class telescopes and carried out a careful frequency analysis of the light curves.Results. In addition to the previously known short-period luminosity variations in the range 342 s-367 s, we find a long-period variation with a period of 54 mn and an amplitude of 0.15 per cent. This can most plausibly be identified with a g-mode pulsation, so that HS 2201+2610 is a new addition to the short list of hybrid sdB pulsators. Conclusions. Along with the previously known pulsating subdwarf B stars HS 0702+6043 and Balloon 090100001 showing hybrid behaviour, the new hybrid HS 2201+2610 is the third member of this class. This important property of HS 2201+2610 can lead to a better characterisation of this planet-hosting star, helping the characterisation of its planetary companion as well. Current pulsation models cannot yet reproduce hybrid sdBV stars particularly well and improved pulsation models for this object have to include the hybrid behaviour.
We present a model atmosphere analysis of ten new DO white dwarfs and five new PG 1159 stars discovered in the Sloan Digital Sky Survey DR 1, DR2 and DR3. This is a significant increase in the number of known DOs and PG 1159 stars. DO white dwarfs are situated on the white dwarf cooling sequence from the upper hot end (T eff ≈ 120 000 K) down to the DB gap (T eff ≈ 45 000 K). PG 1159 stars on the other hand feature effective temperatures which exceed T eff = 65 000 K with an upper limit of T eff = 200 000 K and are the proposed precursors of DO white dwarfs. Improved statistics are necessary to investigate the evolutionary link between these two types of stars. From optical SDSS spectra effective temperatures, surface gravities and element abundances are determined by means of non-LTE model atmospheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.