Radiolabeled protein A from Staphylococcus aureus (SpA) injected i.v. into mice and rabbits forms a soluble [(IgG)2-(SpA)1]2 complex (Mr = 684 000) which is identical in composition to that formed by SpA in vitro with an equivalent amount or an excess of IgG. A soluble rabbit IgG-SpA complex injected into a mice or rabbits dissociates completely in vivo and a new complex is formed with the IgG of the recipient animal. The half-life of SpA administered to a mouse or a rabbit is therefore the half-life of the IgG-SpA complex formed in vivo. In mice and rabbits the half-life of the complexes formed is 9 and 30 h, respectively, whereas the half-life of rabbit IgG in these animals is 106 and 153 h, respectively. Fragment B of SpA (fSpA) reacts with IgG of mouse and rabbit and forms an (IgG)1-(fSpA)1 complex. Complexes of identical composition are formed if fSpA is injected i.v. into mice and rabbits. The half-life of the complexes in mice and rabbits are much shorter than those of the corresponding free IgG in these animals (up to 15 times). This result suggests that the binding of fSpA to the CH2 and the CH3 domains of IgG alters the function of the site, which controls the catabolism of IgG and is located in the CH2 domain. By contrast, fSpA does not change the Fc receptor-binding site of IgG, indicating that the Fc receptor site and the catabolic site are unrelated to each other.
Two short-lived isomeric states in llSSb have been investigated by the 11SSn(p,n), 11aSn(d, 2n) and a~SIn(~, n) reactions. The TDPAD method on solid and liquid metallic targets was used to measure the electromagnetic moments of these states
Pure [zc2ds/2|and [rclg9/~ | configurations have been established for the two isomeric states. An experimental evidence concerning the participation of the lg9/~ proton shell-model intruder excitation into the positive parity lowlying level structure of the odd-odd ~lsSb nucleus was obtained.
Angular correlation measurements of the ?, transitions coincident with 35.5 keV in 125Te were carried out with Ge(Li)-Si(Li) detectors. Mixing ratios for some of the transitions were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.