Local field distributions in random metal-dielectric films near a percolation threshold are experimentally studied using scanning near-field optical microscopy ͑SNOM͒. The surface-plasmon oscillations in such percolation films are localized in small nanometer-scale areas, ''hot spots,'' where the local fields are much larger than the field of an incident electromagnetic wave. The spatial positions of the hot spots vary with the wavelength and polarization of the incident beam. Local near-field spectroscopy of the hot spots is performed using our SNOM. It is shown that the resonance quality-factor of hot spots increases from the visible to the infrared. Giant local optical activity associated with chiral plasmon modes has been obtained. The hot spot's large local fields may result in local, frequency and spatially selective photomodification of percolation films.
This article is the first step in the development of a hybrid metrology combining AFM and SEM techniques for measuring the dimensions of a nanoparticle population in 3D space (X,Y,Z). This method exploits the strengths of each technique on the same set of nanoparticles. AFM is used for measuring the nanoparticle height and the measurements along X and Y axes are deduced from SEM images. A sampling method is proposed in order to obtain the best deposition conditions of SiO2 and gold nanoparticles on mica or silicon substrates. Only the isolated nanoparticles are taken into account in the histogram of size distribution. Moreover, a semi-automatic Matlab routine has also been developed to process the AFM and SEM images, measure and count the nanoparticles. This routine allows the user to exclusively select the isolated nanoparticles through a control interface. The measurements have been performed on spherical-like nanoparticles to test the method by comparing the results obtained with both techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.