In embedded control applications, system cost and power/energy consumption are key considerations. In such applications, program memory forms a significant part of the chip area. Hence reducing code size reduces the system cost significantly. A significant part of the total power is consumed in fetching instructions from the program memory. Hence reducing instruction fetch power has been a key target for reducing power consumption. To reduce the cost and power consumption, embedded systems in these applications use application specific processors that are fine tuned to provide better solutions in terms of code density, and power consumption. Further fine tuning to suit each particular application in the targeted class can be achieved through reconfigurable architectures. In this paper, we propose a reconfiguration mechanism, called Instruction Re-map Table, to re-map the instructions to shorter length code words. Using this mechanism, frequently used set of instructions can be compressed. This reduces code size and hence the cost. Secondly, we use the same mechanism to target power reduction by encoding frequently used instruction sequences to Gray codes. Such encodings, along with instruction compression, reduce the instruction fetch power. We enhance Texas Instruments DSP core TMS320C27x to incorporate this mechanism and evaluate the improvements on code size and instruction fetch energy using real life embedded control application programs as benchmarks. Our scheme reduces the code size by over 10% and the energy consumed by over 40%.
Advances in VLSI technology have enabled designers to integrate more functionality in one chip. One of the major design complexities arising from this is defining the reset architecture for a SoC, especially when there are multiple clock domains. Incorrect assumptions or overlooked issues might cause silicon bugs requiring costly re-spins or even worse to a missed opportunity.In this paper, various careabouts that help achieve first pass silicon success as well as reduced verification and manufacturing test generation effort with respect to the reset signal and the reset state are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.