BackgroundAutomated treatment planning and/or optimization systems (ATPS) are in the process of broad clinical implementation aiming at reducing inter-planner variability, reducing the planning time allocated for the optimization process and improving plan quality. Five different ATPS used clinically were evaluated for advanced head and neck cancer (HNC).MethodsThree radiation oncology departments compared 5 different ATPS: 1) Automatic Interactive Optimizer (AIO) in combination with RapidArc (in-house developed and Varian Medical Systems); 2) Auto-Planning (AP) (Philips Radiation Oncology Systems); 3) RapidPlan version 13.6 (RP1) with HNC model from University Hospital A (Varian Medical Systems, Palo Alto, USA); 4) RapidPlan version 13.7 (RP2) combined with scripting for automated setup of fields with HNC model from University Hospital B; 5) Raystation multicriteria optimization algorithm version 5 (RS) (Laboratories AB, Stockholm, Sweden). Eight randomly selected HNC cases from institution A and 8 from institution B were used. PTV coverage, mean and maximum dose to the organs at risk and effective planning time were compared. Ranking was done based on 3 Gy increments for the parallel organs.ResultsAll planning systems achieved the hard dose constraints for the PTVs and serial organs for all patients. Overall, AP achieved the best ranking for the parallel organs followed by RS, AIO, RP2 and RP1. The oral cavity mean dose was the lowest for RS (31.3 ± 17.6 Gy), followed by AP (33.8 ± 17.8 Gy), RP1 (34.1 ± 16.7 Gy), AIO (36.1 ± 16.8 Gy) and RP2 (36.3 ± 16.2 Gy). The submandibular glands mean dose was 33.6 ± 10.8 Gy (AP), 35.2 ± 8.4 Gy (AIO), 35.5 ± 9.3 Gy (RP2), 36.9 ± 7.6 Gy (RS) and 38.2 ± 7.0 Gy (RP1). The average effective planning working time was substantially different between the five ATPS (in minutes): < 2 ± 1 for AIO and RP2, 5 ± 1 for AP, 15 ± 2 for RP1 and 340 ± 48 for RS, respectively.ConclusionsAll ATPS were able to achieve all planning DVH constraints and the effective working time was kept bellow 20 min for each ATPS except for RS. For the parallel organs, AP performed the best, although the differences were small.
The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM false(cm/°false) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (italicp<0.01), D1% (italicp<0.01), CI (italicp<0.01), and HI (italicp<0.01) of the PTV, bladder (italicp<0.01), and rectum (italicp<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (italicp<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality.PACS numbers: 87.55.D, 87.55.de, 87.55.Qr
Multi-criteria optimization provides decision makers with a range of clinical choices through Pareto plans that can be explored during real time navigation and then converted into deliverable plans. Our study shows that dosimetric differences can arise between the two steps, which could compromise the clinical choices made during navigation.
Renormalization factor and unflatness parameters evaluated from Varian and Elekta FFF beams are provided, in particular renormalization factors table and fit parameters.
Magnetic field correction factors are needed for absolute dosimetry in magnetic resonance (MR)-linacs. Currently experimental data for magnetic field correction factors, especially for small volume ionization chambers, are largely lacking. The purpose of this work is to establish, independent methods for the experimental determination of magnetic field correction factors k B ⃗ , Q in an orientation in which the ionization chamber is parallel to the magnetic field. The aim is to confirm previous experiments on the determination of Farmer type ionization chamber correction factors and to gather information about the usability of small-volume ionization chambers for absolute dosimetry in MR-linacs. The first approach to determine k B ⃗ , Q is based on a cross-calibration of measurements using a conventional linac with an electromagnet and an MR-linac. The absolute influence of the magnetic field in perpendicular orientation is quantified with the help of the conventional linac and the electromagnet. The correction factors for the parallel orientation are then derived by combining these measurements with relative measurements in the MR-linac. The second technique utilizes alanine electron paramagnetic resonance dosimetry. The alanine system as well as several ionization chambers were directly calibrated with the German primary standard for absorbed dose to water. Magnetic field correction factors for the ionization chambers were determined by a cross-calibration with the alanine in an MR-linac. Important quantities like k B ⃗ , Q for Farmer type ionization chambers in parallel orientation and the change of the dose to water due the magnetic field c B ⃗ have been confirmed. In addition, magnetic field correction factors have been determined for small volume ionization chambers in parallel orientation. The electromagnet-based measurements of k B ⃗ , Q for 7 MV / 1.5 T MR-linacs and parallel ionization chamber orientations resulted in 0.9926(22), 0.9935(31) and 0.9841(27) for the PTW 30013, the PTW 31010 and the PTW 31021, respectively. The measurements based on the second technique resulted in values for k B ⃗ , Q of 0.9901(72), 0.9955(72), and 0.9885(71). Both methods show excellent accuracy and reproducibility and are therefore suitable for the determination of magnetic field correction factors. Small-volume ionization chambers showed a variation in the resulting values for k B ⃗ , Q and should be cross-calibrated instead of using tabulated values for correction factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.