Near‐surface boulders can pose serious challenges to opencast mining. They often introduce complexities, delays in drilling, blasting and excavation programmes, which subsequently decrease mining efficiency, increase mining risks and costs. The location of subsurface boulders and the identification of other geological features that may impact mining activities (e.g. fractures, the presence of iron‐rich ultramafic pegmatites and the variation in weathering across a mining region) are necessary to reduce the challenges posed by these geological features, therefore optimizing mining efficiency. In this study, magnetics, electrical resistivity tomography, seismic refraction tomography, ground penetrating radar and borehole data are integrated for boulder delineation and mapping of other geological features that may impact mining using an unmined section at Tharisa Mine, Bushveld Complex (South Africa), as a test site. The results obtained from the different geophysical techniques are found to complement each other and successfully delineate boulders, fractures, iron‐rich ultramafic pegmatites and the variation in weathering and layering across the area. The incorporation of geophysical results can thus improve mining efficiency, while reducing mining risks and costs.
For underground mining, efficient groundwater management is one of the critical mining economics components. The region of interest, known as Tharisa Mine, is situated on the western limb of the Bushveld Igneous Complex, which is home to South Africa’s premier platinum-group metal resources. This work aimed to provide the findings from the investigation and imaging of the near-subsurface hydrogeological architecture in a shallow profile using stable isotopes of water (18O and 2H) and radioactive water isotopes (3H). Regarding isotope data, 18O varied from −3.5 to 1.5‰; 2H from −24 to 4.7‰; and 3H from 2.0 to 3.4 T.U. Utilizing combined geophysical techniques, the results were verified. Additionally, the geophysical methods, including seismic refraction tomography, multichannel analysis of surface waves, electrical resistivity tomography, and magnetics, helped identify the fluid’s pathways and lineaments during migration to verify the isotope results. The groundwater inflow volumes into the open pit were initially determined by integrating the following findings: the delineation of fracture systems/zones and fluid migration pathways; mining activities enhance the storage and transmission ability of the aquifer; and the main sources of water in the mine include mixing of surface and deep water sources, recycling of water possibly via lineaments, and tailings dam seepages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.