Today, the efficiency of turbines is limited by different losses. Minimizing these losses is a main goal to reduce fuel consumption and produce more environmentally friendly machines. Observations on the scales of fast swimming sharks display a riblet structure. These riblets provide a significant reduction of drag losses, but are quite sensitive on pollution. Therefore, for a good performance, it is essential to combine these structures with self-cleaning properties. A lateral- and depth-selective distribution of particles with a negative thermal expansion coefficient (NTE) in a binder with positive thermal expansion coefficient can be used to deform the surfaces depending on the temperature. At high temperatures a riblet structure will be formed by local expansion or shrinkage and at cooling down the surface will be cleaned by the reversal of the deformation. Beside the production of a coating with a lateral- and depth-selective distribution of the NTE-ceramics within the binder the thermodynamical stability of the ceramics inside the binder is part of the investigations to provide a sufficient long-time stability of the coating.
For the fabrication of a micro fluidic high pressure oil sensor (400 bar) based on an infrared transmission measuring principle the bonding of 2 mm silicon wafers is necessary. Conventional bonding techniques such as silicon fusion bonding or anodic bonding are not suitable for bonding thick and inflexible silicon wafers, because these techniques can not compensate for the wafer bow. We present a new bonding procedure for silicon substrates thicker than 1 mm using a silicon adapted LTCC tape as an intermediate leveling layer. The wafers are preprocessed by etching a nano structured silicon surface on the internal side. The silicon wafers are aligned and stacked with pre-structured green LTCC tapes by an optical stacking unit. During the hot isostatic lamination at 55 bar the structured LTCC tape is adjusted to the silicon. A subsequent pressure assisted sintering leads to a wafer bonding strength up to 5000 N/cm2. With the bonding technique it is possible to create cavities and channels between the thick wafers by the use of punched and laser cut LTCC. The fabrication steps of the sandwich build-up especially the sequential lamination and the optical adjusting procedure of the flexible (LTCC) and inflexible (2 mm Wafer) substrates will be explained in detail. A method to reduce the shrinkage and distortion of the green LTCC during handling is demonstrated. The distribution of the bonding and bursting strength of the single fluidic systems on a complete sandwich substrate is analyzed.
The integration density in semiconductor devices is significantly increased in the last years. This trend is already described by Moore's law what forecasts a doubling of the integration density every two years. This evolution makes greater demands on the substrate technology which is used for the first level interconnect between the semiconductor and the device package. Higher pattern resolution is required to connect more functions on a smaller chip. Also the thermal performance of the substrate is a crucial issue. The increased integration density leads to an increased power density, what means that more heat has to dissipate on a smaller area. Thus, substrates with a high thermal conductivity (e. g. direct bonded copper (DBC)) are utilized which spread the heat over a large area. However, the reduced pattern resolution caused by thick metal layers is disadvantageous for this substrate technology. Alternatively, low temperature co-fired ceramic (LTCC) can be used. This multilayer technology provides a high pattern resolution in combination with a high integration grade. The poor thermal conductivity of LTCC (3 … 5 W*m−1*K−1) requires thermal vias made of silver paste which are placed between the power chip and the heat sink and reduce the thermal resistance of the substrate. The via-pitch and diameter is limited by the LTCC technology, what allows a maximum filling grade of approx. 20 to 25 %. Alternatively, an opening in the ceramic is created, to bond the chip directly to the heat sink. This leads to technological challenges like the CTE mismatch between the chip and the heat sink material. Expensive materials like copper molybdenum composites with matched CTE have to be used. In the presented investigation, a thick silver tape is used to form a thick silver heat spreader through the LTCC substrate. An opening is structured by laser cutting in the LTCC tape and filled with a laser cut silver tape. After lamination, the substrate is fired using a constraint sintering process. The bond strength of the silver to LTCC interface is approx. 5.6 MPa. The thermal resistance of the silver structure is measured by a thermal test chip (Delphi PST1, 2.5 mm × 2.5 mm) glued with a high thermal conducting epoxy to the silver structure. The chip contains a resistor and diodes to generate heat and to determine the junction temperature respectively. The backside of the test structure is temperature stabilized by a temperature controlled heat sink. The resulting thermal resistance is in the range of 1.1 K/W to 1.5 K/W depending on the length of silver structure (5 mm to 7 mm). Advantages of the presented heat spreader are the low thermal resistance and the good embedding capability in the co-fire LTCC process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.