This report summarizes current physiological and technical knowledge on esophageal pressure (Pes) measurements in patients receiving mechanical ventilation. The respiratory changes in Pes are representative of changes in pleural pressure. The difference between airway pressure (Paw) and Pes is a valid estimate of transpulmonary pressure. Pes helps determine what fraction of Paw is applied to overcome lung and chest wall elastance. Pes is usually measured via a catheter with an air-filled thin-walled latex balloon inserted nasally or orally. To validate Pes measurement, a dynamic occlusion test measures the ratio of change in Pes to change in Paw during inspiratory efforts against a closed airway. A ratio close to unity indicates that the system provides a valid measurement. Provided transpulmonary pressure is the lung-distending pressure, and that chest wall elastance may vary among individuals, a physiologically based ventilator strategy should take the transpulmonary pressure into account. For monitoring purposes, clinicians rely mostly on Paw and flow waveforms. However, these measurements may mask profound patient-ventilator asynchrony and do not allow respiratory muscle effort assessment. Pes also permits the measurement of transmural vascular pressures during both passive and active breathing. Pes measurements have enhanced our understanding of the pathophysiology of acute lung injury, patient-ventilator interaction, and weaning failure. The use of Pes for positive end-expiratory pressure titration may help improve oxygenation and compliance. Pes measurements make it feasible to individualize the level of muscle effort during mechanical ventilation and weaning. The time is now right to apply the knowledge obtained with Pes to improve the management of critically ill and ventilator-dependent patients.
Displacements of the rib cage are determined by the intrinsic passive properties of the rib cage, rib cage musculature, pleural and abdominal pressures, and the diaphragm. The diaphragm's mechanical actions on the rib cage are inferred from a force-balance analysis in which the diaphragm is seen to cause expansion of the rib cage by pulling cephalad at its insertions on the lower ribs (insertional component) and by raising intra-abdominal pressure, which pushes outward on the diaphragm's zone of apposition to the rib cage (appositional component). Goldman and Mead suggested that the diaphragm, acting alone, could drive both the rib cage and abdomen on their passive characteristics. The force-balance analysis shows that the diaphragm's inspiratory action on the rib cage is less than predicted by Goldman and Mead, but that in the special circumstances of their experiment (low lung volumes), the appositional component is large and the rib cage can be driven close to its passive characteristics. The force-balance analysis is consistent with recent observations by other investigations and is incompatible with the model proposed by Macklem and colleagues and with the Goldman-Mead hypothesis. Experiments on three subjects produced data consistent with the force-balance analysis, showing that the inspiratory action of the diaphragm on the rib cage is greatest at low lung volumes.
To determine if regional differences exist in the activity of abdominal muscles during respiratory and nonrespiratory maneuvers, we studied four healthy subjects by comparing electromyographic (EMG) activity from surface electrodes placed lateral to rectus muscle, one pair on the upper abdomen and the other on the lower abdomen. In one subject EMG recordings were made from wires placed in various layers of the abdominal wall. Relative positions and changes in size of anatomic structures during maneuvers were determined from real-time ultrasonography of the abdominal wall. Expulsive or valsalva maneuvers evoked the same relative EMG activity in the upper and lower abdomen. In the resting supine posture no EMG activity was detectable; however, in the standing posture greater tonic EMG activity appeared in the lower abdomen. During rebreathing, phasic EMG activity during expiration was greater in the upper than in the lower abdomen in all subjects. Observations from ultrasonographic and electromyographic evaluations suggest that the control of abdominal muscles and their influence on respiratory mechanics are potentially more complex than has been suggested by previous reports.
At high oscillation frequencies (4 to 30 hertz), effective alveolar ventilation can be achieved with tidal volumes much smaller than the anatomic dead space. An explanation of this phenomenon is given in terms of the combined effects of diffusion and convection and in terms of data consistent with the hypothesis. Theory and experimental results both show that the significant variable determining the effectiveness of gas exchange is the amplitude of the oscillatory flow rate independent of the individual values of frequency and stroke volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.