Microcarriers provide large adhesion area allowing high cell densities in bioreactor systems. This study focused on the investigation of cell adhesion and cell growth characteristics of both anchorage-dependent CHO-K1 and anchorage-independent Ag8 myeloma cell lines cultivated on four different microcarriers (Biosilon®, Microhex®, Cytodex 3®, Cytoline 2®) by considering the cell kinetics and physiological data. Experiments were performed in both static and agitated cell culture systems by using 24-well tissue culture plates and then 50-ml spinner flasks. In agitated cultures, the highest specific growth rates (0.026 h for CHO-K1 and 0.061 h for Ag8 cell line) were obtained with Cytodex 3® and Cytoline 2® microcarriers for CHO-K1 and Ag8 cell line, respectively. Metabolic characteristics showed some variation among the cultures with the four microcarriers. The most significant being the higher production of lactate with microcarriers with CHO-K1 cells relative to the Ag8 cells. SEM analyses revealed the differences in the morphology of the cells along with microcarriers. On Cytodex 3® and Cytoline 2®, CHO-K1 cells attached to the substratum through long, slender filopodia, whereas the cells showed a flat morphology by covering the substratum on the Biosilon® and Microhex®. Ag8 cells maintained their spherical shapes throughout the culture for all types of microcarriers. In an attempt to scale-up, productions were carried out in 50-ml spinner flasks. Cytodex 3® (for CHO-K1 cells) and Cytoline 2® (for Ag8 cells) were evaluated. The results demonstrate that high yield of biomass could be achieved through the immobilization of the cells in each culture system. And cell cultures on microcarriers, especially on Cytodex 3® and Cytoline 2®, represented a good potential as microcarriers for larger scale cultures of CHO-K1 and Ag8, respectively. Moreover, owing to the fact that the cell lines and culture media are specific, outcomes will be applicable for other clones derived from the same host cell lines.
BackgroundSerum have been traditionally used to support growth of animal cell cultures. However, the increasing growth of therapeutic biopharmaceuticals market, accelerated the high demand for the serum-free medium (SFM).ObjectiveThe main objective is to design a SFM for a stable rCHO cell line that produces a fully anti-human TNF-α monoclonal antibody (mAb) corresponding to HUMIRA® biosimilar.Materials and methodsDesign of Experiment (DoE) approaches were used to determine the key factors due to their effect on specific growth rate and mAb production. The production was carried out in T-flasks at different initial cell concentrations and then in Erlenmeyers with the developed SFM. mAb production was compared with commercial SFMs in terms of yield and productivity.ResultsRegarding to our findings, when the developed SFM-adapted cells were compared with the cells produced in commercial SFMs, the mAb productivity in developed SFM were higher (1.3–1.6 times) depending on higher mAb concentration and less (3–5 times) cell concentration. Additionally, the produced mAb in the developed SFM provided high conformational similarity with its originator HUMIRA®.ConclusionDoE approaches could be used to reduce cost and time in designing SFM for any commercially important cell line to produce high value biologics.
In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.