Ikaros is known as a critical regulator of lymphocyte development. We examined the regulatory role of Ikaros in LPS/IFN-gamma-induced inducible nitric oxide synthase (iNOS) expression by macrophages. Our results showed that IK6 (Ikaros dominant negative isoform) induction increases the iNOS expression. Ikaros DNA binding activity on the iNOS promoter was decreased, and a mutation of the Ikaros-binding site on the iNOS promoter resulted in an increase in LPS/IFN-gamma-induced iNOS expression. LPS/IFN-gamma increased the histone (H3) acetylation on the Ikaros DNA binding site. These results suggest that Ikaros acts as a negative regulator on iNOS expression. Treatment with a casein kinase 2 (CK2) inhibitor reversed LPS/IFN-gamma-induced decrease in Ikaros DNA binding activity. Moreover, overexpression of kinase-inactive CK2 decreased iNOS expression and a significant amount of CK2alpha1 translocated into the nucleus in LPS/IFN-gamma-treated cells. Overall, these data indicate that LPS/IFN-gamma decreases the Ikaros DNA binding activity via the CK2 pathway, resulting in an increase of iNOS expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.