Abstract. The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO) in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS), cartridges for 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by off-line high pressure liquid chromatography (HPLC) analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS). A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for online HCHO detection at low absolute humidities.The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted Correspondence to: T. Brauers (th.brauers@fz-juelich.de) under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was fair.
[1] This paper presents results from the first large-scale in situ intercomparison of oxygenated volatile organic compound (OVOC) measurements. The intercomparison was conducted blind at the large (270 m 3 ) simulation chamber, Simulation of Atmospheric Photochemistry in a Large Reaction Chamber (SAPHIR), in Jülich, Germany. Fifteen analytical instruments, representing a wide range of techniques, were challenged with measuring atmospherically relevant OVOC species and toluene (14 species, C 1 to C 7 ) in the approximate range of 0.5-10 ppbv under three different conditions: (1) OVOCs with no humidity or ozone, (2) OVOCs with humidity added (r.h. % 50%), and (3) OVOCs with ozone (%60 ppbv) and humidity (r.h. % 50%). The SAPHIR chamber proved to be an excellent facility for conducting this experiment. Measurements from individual instruments were compared to mixing ratios calculated from the chamber volume and the known amount of OVOC injected into the chamber. Benzaldehyde and 1-butanol, compounds with the lowest vapor pressure of those studied, presented the most overall difficulty because of a less than quantitative transfer through some of the participants' analytical systems. The performance of each individual instrument is evaluated with respect to reference values in terms of time series and correlation plots for each compound under the three measurement conditions. A few of the instruments performed very well, closely matching the reference values, and all techniques demonstrated the potential for quantitative OVOC measurements. However, this study showed that nonzero offsets are present for specific compounds in a number of instruments and overall improvements are necessary for the majority of the techniques evaluated here.Citation: Apel, E. C., et al. (2008), Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber,
In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission occurred during both day and night with highest fluxes (0.2 mg C m -2 h -1 ) during a warm period; deposition occurred dominantly at daytime. Confirming previous branch-level measurements on beech, the forest's monoterpene emissions (0-0.5 mg C m -2 h -1 ), and in-canopy mixing ratios showed a diurnal cycle consistent with light-dependent emissions; a result contrasting temperature-only driven emissions of most conifer species. Also emitted was acetone, but only at ambient temperatures exceeding 20°C. Slow deposition dominated at lower temperatures. Our in-canopy gradient measurements contrast with earlier results from tropical and pine forest ecosystems in that they did not show this beech ecosystem to be a strong sink for oxygenated VOCs (OVOCs). Instead, their gradients were flat and only small deposition velocities (\0.2 cm s -1 ) were observed to the onsite soil. However, as methanol soil uptake was consistent and possibly related to soil moisture, more measurements are needed to evaluate its soil sink strength. In turn, as canopy scale fluxes are net fluxes with stomatal emissions from photosynthesizing leaves potentially affecting non-stomatal oxygenated VOC uptake, only independent, controlled laboratory experiments may be successful in separating gross fluxes.
An indoor air quality survey was conducted at selected indoor environments in the Department of Physics and Electrical Engineering of the University of Bremen, Germany, during August 2005. The mean indoor/ outdoor (I/O) ratios of pollutants appeared to be higher than 1.0 for most volatile organic compounds (VOCs). Apart from direct emissions from indoor materials and infiltration of outdoor air, environmental tobacco smoke (ETS) was a dominant factor in indoor pollution. Pollutants which were commonly associated with cleaning products and materials, including monoterpenes, aldehydes and acetone exhibited general trends of higher concentrations indoors compared to outdoor levels. Indoor concentrations of many VOCs were found to be 2—10 times higher during weekdays as compared to the weekend, exhibiting a strong correlation with human activities. A comparison with previous studies on the health risks due to selected VOCs indicates that long-term exposure to the peak values reported in this study has potential to develop adverse health effects to the occupants whereby reducing the efficiency in the workplace.
The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO) in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS), car-5 tridges for 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by off-line high pressure liquid chromatography (HPLC) analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transferreaction mass spectrometer (PTR-MS). A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for on-line 10 HCHO detection at low absolute humidities.The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to 15 mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agree-20 ment between the methods was good. Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Fig. 3. Time series of measured and calculated HCHO mixing ratios and chamber conditions during the zero air experiment with humidity. Upper panel: Original measurements of the individual instruments at their original time resolution. The calculated values are at 1 min timestep. Middle panel: Measurements ratioed to HCHO calc in log-scale. Lower panel: Ozone mixing ratio (left axis) and temperatures (right axis) outside the chamber, inside the chamber, and dewpoint temperatures inside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.