We demonstrate an efficient transformation of a linearly polarized Gaussian beam to a radially or an azimuthally polarized doughnut (0,1)* Laguerre-Gaussian beam of high purity. We use a spatially variable retardation plate, composed of eight sectors of a lambda/2 retardation plate, to transform a linear polarization distribution to radial/azimuthal distribution. We transformed an Nd:YAG Gaussian beam with M(2)=1.3 to a radially and azimuthally polarized (0,1)* Laguerre-Gaussian beams with M(2)=2.5 and degree of radial/azimuthal polarization of 96-98%.
Production and amplification of radially and azimuthally (tangentially) polarized laser beams are demonstrated. Based on the different focusing between radially and tangentially polarized light in thermally stressed isotropic laser rods, Nd:YAG laser oscillators were developed to produce low-loss stable oscillation in a single polarization. Pure radially polarized light at 70 W with M2 = 2 and on-axis impure radially polarized light at 150 W with M2 = 2.5 were achieved. The radially polarized beams were then amplified while good beam quality and polarization purity were retained. Complete elimination of thermal-birefringence-induced aberrations was demonstrated. This should allow much better beam quality from rod-based high-power lasers.
An efficient pumping scheme that involves direct excitation of the upper lasing level of the Nd(3+) ion is demonstrated experimentally. The results obtained for direct upper laser level pumping of Nd:YAG R2 (869 nm) and Nd:YVO(4) (880 nm) were compared with traditional approximately 808-nm pump band excitation. A tunable cw Ti:sapphire laser was used as the pump source. In Nd:YAG, the oscillator slope efficiency increased by 10% and the threshold decreased by 11%. In Nd:YVO(4), the slope efficiency increased by 5% and the threshold decreased by 11%. These results agree with theory. The increase in optical efficiency indicates that laser material thermal loading can be substantially reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.