Genome-wide runs of homozygosity (ROH) are suitable for understanding population history, calculating genomic inbreeding, deciphering genetic architecture of complex traits and diseases as well as identifying genes linked with agro-economic traits. Autozygosity and ROH islands, genomic regions with elevated ROH frequencies, were characterized in 112 animals of seven Indian native cattle breeds (B. indicus) using BovineHD BeadChip. In total, 4138 ROH were detected. The average number of ROH per animal was maximum in draft breed, Kangayam (63.62 ± 22.71) and minimum in dairy breed, Sahiwal (24.62 ± 11.03). The mean ROH length was maximum in Vechur (6.97 Mb) and minimum in Hariana (4.04 Mb). Kangayam revealed the highest ROH based inbreeding (F ROH> 1Mb = 0.113 ± 0.059), whereas Hariana (F ROH> 1Mb = 0.042 ± 0.031) and Sahiwal (F ROH> 1Mb = 0.043 ± 0.048) showed the lowest. The high standard deviation observed in each breed highlights a considerable variability in autozygosity. Out of the total autozygous segments observed in each breed except Vechur, > 80% were of short length (< 8 Mb) and contributed almost 50% of the genome proportion under ROH. However, in Vechur cattle, long ROH contributed 75% of the genome proportion under ROH. ROH patterns revealed Hariana and Sahiwal breeds as less consanguineous, while recent inbreeding was apparent in Vechur. Maximum autozygosity observed in Kangayam is attributable to both recent and ancient inbreeding. The ROH islands were harbouring higher proportion of QTLs for production traits (20.68% vs. 14.64%; P≤ 0.05) but lower for reproductive traits (11.49% vs. 15.76%; P≤ 0.05) in dairy breeds compared to draft breed. In draft cattle, genes associated with resistant to diseases/higher immunity (LYZL1, SVIL, and GPX4) and stress tolerant (CCT4) were identified in ROH islands; while in dairy breeds, for milk production (PTGFR, CSN1S1, CSN2, CSN1S2, and CSN3). Significant difference in ROH islands among large and short statured breeds was observed at chromosome 3 and 5 involving genes like PTGFR and HMGA2 responsible for milk production and stature, respectively. PCA analysis on consensus ROH regions revealed distinct clustering of dairy, draft and short stature cattle breeds.
Oxygen free radicals produced by neutrophils are important in the pathogenesis of mucosal damage in ulcerative colitis. Vitamin A, vitamin E and cysteine in the plasma can scavenge free radicals. In the present study, plasma levels of vitamin A, vitamin E, cysteine, cystine and protein-bound cysteine were measured in active ulcerative colitis before and immediately after treatment of the active disease, and correlated with disease severity, extent and activity. Plasma vitamin A and cysteine were significantly reduced in active ulcerative colitis compared with controls. Levels of vitamin E, cystine and protein-bound cysteine were not significantly altered in active ulcerative colitis. Vitamin A and cysteine concentrations returned to normal levels (P < 0.05) within 2 weeks of treating active colitis. There were significant negative correlations between clinical severity and the plasma concentrations of vitamin A and cysteine. Plasma cysteine levels also correlated inversely to disease extent. Depletion of the circulating antioxidants, vitamin A and cysteine, in active ulcerative colitis is likely to be important in the pathophysiology of the disease.
Device to Device communication is an important aspect of the fifth-generation(5G) and beyond fifth-generation (B5G) wireless networks. 5G facilitates network connectivity among a large number of devices. This tremendous growth in the number of devices requires a large number of spectrum resources to support a variety of applications and also lays a huge burden on the Base Station. D2D skips the need to forward the data to the Base Station and helps the devices to take part in direct Peer-to-Peer (P2P) transmission. This enables high-speed data transmission, efficient information transmission with improved latency and most importantly is used to offload the traffic that is laid on the Base Station. D2D has many practical issues and challenges that are briefly explained in this paper, out of which resource allocation is the main area of focus as it plays an important role in the performance of the system. The optimal allocation of resources such as power, time and spectrum can improve the system performance. Therefore, in order to identify the open research issues in the field of resource allocation in D2D communication, a detailed survey is needed. In this paper, various resource allocation algorithms and methodologies have been seriously analysed and evaluated based on the degree of involvement of the Base Station to figure out the research gap and to provide a strong theoretical basis for the research problems related to resource allocation in D2D communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.