Identified pi(+/-), K(+/-), p, and (-)p transverse momentum spectra at midrapidity in sqrt[s(NN)] = 130 GeV Au+Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. Within errors, all midrapidity particle yields per participant are found to be increasing with the number of participating nucleons. There is an indication that K(+/-), p, and (-)p yields per participant increase faster than the pi(+/-) yields. In central collisions at high transverse momenta (p(T) > or =2 GeV/c), (-)p and p yields are comparable to the pi(+/-) yields.
We study screening correlators of quark-antiquark composites at T = 2Tc, where Tc is the QCD phase transition temperature, using overlap quarks in the quenched approximation of lattice QCD. As the lattice spacing is changed from 1/4T to a = 1/6T and 1/8T , we find that screening correlators change little, in contrast with the situation for other types of lattice fermions. All correlators are close to the ideal gas prediction at small separations. The long distance falloff is clearly exponential, showing that a parametrization by a single screening length is possible at distances z ≥ 1/T . The correlator corresponding to the thermal vector is close to the ideal gas value at all distances, whereas that for the thermal scalar deviates at large distances. This is examined through the screening lengths and momentum space correlators. There is strong evidence that the screening transfer matrix does not have reflection positivity.
ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Δϕ, and pseudorapidity, Δη, in ffiffi ffi s p ¼ 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval jηj < 2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Δϕ ∼ 0 that extends over a wide range of Δη, which has been referred to as the "ridge." Per-trigger-particle yields, YðΔϕÞ, are measured over 2 < jΔηj < 5. For both collision energies, the YðΔϕÞ distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by cos ð2ΔϕÞ. The fitted Fourier coefficient, v 2;2 , exhibits factorization, suggesting that the ridge results from per-event cos ð2ϕÞ modulation of the single-particle distribution with Fourier coefficients v 2 . The v 2 values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p T dependence similar to that measured in p þ Pb and Pb þ Pb collisions. The v 2 values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p þ Pb collisions, and that the dynamics responsible for the ridge has no strong ffiffi ffi s p dependence. DOI: 10.1103/PhysRevLett.116.172301 Measurements of two-particle angular correlations in high-multiplicity proton-proton (pp) collisions at a centerof-mass energy ffiffi ffi s p ¼ 7 TeV at the LHC showed an enhancement in the production of pairs at small azimuthal-angle separation, Δϕ, that extends over a wide range of pseudorapidity differences, Δη, and which is often referred to as the "ridge" [1]. The ridge has also been observed in proton-lead (p þ Pb) collisions [2][3][4][5][6][7], where it is found to result from a global sinusoidal modulation of the per-event single-particle azimuthal angle distributions [3][4][5][6] TeV data recorded during LHC run 2 and run 1, respectively, to address these issues. The maximum number of inelastic interactions per crossing was 0.04 and 0.5 for the 13 and 2.76 TeV data, respectively. Two-particle angular correlations are measured as a function of Δη and Δϕ in different intervals of the measured charged-particle multiplicity and different p T intervals spanning 0.3 < p T < 5 GeV: 0.3-0.5 GeV, 0.5-1 GeV, 1-2 GeV, 2-3 GeV, 3-5 GeV. Separate p T -integrated results use 0.5 < p T < 5 GeV. Per-trigger-particle yields are obtained from the long-range (jΔηj > 2) component of the correlation. A new template-fitting method is applied to these yields to test for sinusoidal modulation similar to that observed in p þ Pb collisions. The measurements were performed using the ATLAS inner detector (ID), min...
The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. Disciplines Engineering Physics | Physics Comments This is a manuscript of an article from Nuclear Instruments and Methods in Physics Research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.