In this study, we investigated the properties of proteolytic enzymes of two species of Aspergillus, Aspergillus flavus 1 (with a high degree of pathogenicity) and Aspergillus ochraceus L-1 (a conditional pathogen), and their effects on various components of the hemostasis system (in vitro) in the case of their penetration into the bloodstream. We showed that micromycete proteases were highly active in cleaving both globular (albuminolysis) and fibrillar (fibrin) proteins, and, to varying degrees, they could coagulate the plasma of humans and animals (due to proteolysis of factors of the blood coagulation cascade) but were not able to coagulate fibrinogen. The proteases of both Aspergillus fully hydrolyzed thrombi in 120–180 min. Micromycetes did not show hemolytic activity but were able to break down hemoglobin.
Micromycetes are known to secrete numerous enzymes of biotechnological and medical potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary for proper folding and maturation. The recombinant protease was identical to the native enzyme from micromycete in terms of its biological properties, including an ability to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in medicine, veterinary science, diagnostics, and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.